Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемДмитрий Есипов
1 О подготовке к ЕГЭ по математике 2016 Шноль Дмитрий Эммануилович, Методист Центра педагогического мастерства, Учитель школы «Интеллектуал»
2 План встречи Знакомство. ЕГЭ 2015, результаты и выводы Изменения 2016 года Психологические и социальные аспекты при подготовке к ЕГЭ О методике подготовки к ЕГЭ по математике. Общие вопросы и разбор конкретных заданий. Печатные и электронные ресурсы. Вопросы, реплики, обсуждения.
3 Структура варианта базового ЕГЭ задач с кратким ответом: «Школьные» задачи, похожие на задачи из учебника – 10 Практико-ориентированные задачи – 8 Задачи «на подумать» - 2 Достаточно знаний 5-9 класса – 14 Нужны знания класса – 6 Можно пользоваться справочными материалами, которые выдаются.
4 Содержание заданий базового ЕГЭ 1. Действия с дробями - 80%. 2. Степень с целым показателем, стандартный вид числа -75%. 3. Текстовая задача на проценты -85%. 4. Подставить в формулу (работа по четкому алгебраическому алгоритму, входящие в формулу функции на уровне 7 класса)- 80%
5 Содержание заданий базового ЕГЭ 5. Вычислить: корни, логарифмы, простая тригонометрия-70%. 6. Деление с остатком (сколько булочек на 100 руб.), сдача и т.п. – 85%. 7. Простейшее уравнение (линейное, квадратное, показательное, логарифмическое) – 75%. 8. Практическая геометрия (площадь и периметр, план местности и т.п.) -75%
6 Содержание заданий базового ЕГЭ 9. Прикидка порядка величины (задание на множественный выбор) - 80%. 10. Вероятность - 65%. 11. Чтение диаграммы, таблицы, графика реальной величины (температуры). 12. Оптимальный выбор (три фирмы с более простым счетом и новый тип задач, где несколько вариантов ответа) - 95 %.
7 Содержание заданий базового ЕГЭ 13. Стереометрия на понимание (изменение площади и объема при изменении линейного параметра или количество вершин/граней)- 50%. 14. Скорость и производная по графику (задание на соответствие) – 95%. 15. «Школьная» планиметрия -50%. 16. «Школьная» стереометрия -40%. 17. Сравнения величин и решение неравенств – 40%.
8 Содержание заданий базового ЕГЭ 18. Логика на нематематическом материале – 90%. 19. Числовой «конструктив»: привести пример числа с данными свойствами – 50%. 20. Несложная, но нестандартная задача (кружок 6-7 класса) – 30%.
9 19 «Числовой конструктив» Найдите трёхзначное натуральное число, которое при делении на 3, на 4 и на 5 даёт в остатке 1 и цифры которого расположены в порядке убывания слева направо.
10 19 «Числовой конструктив» Найдите трёхзначное натуральное число, которое при делении на 3, на 4 и на 5 даёт в остатке 1 и цифры которого расположены в порядке убывания слева направо. Число имеет вид 60n+1. Дальше нетрудный перебор. Например, подходит 721.
11 19 «Числовой конструктив» Приведите пример пятизначного числа, кратного 15, произведение цифр которого больше 30, но меньше 60.
12 19 «Числовой конструктив» Приведите пример пятизначного числа, кратного 15, произведение цифр которого больше 30, но меньше 60. Последняя цифра 5. Сумма цифр делится на 3. Произведение первых 4-х цифр больше 6, но меньше 12. Ответ: или или…
13 18. Логика. Основные проблемы Путается прямое и обратное утверждение Нет понимания, что если по данным задачи нельзя ничего определенного сказать о том, верно ли утверждение (может быть так, а может быть эдак), то утверждение нельзя считать верным.
14 18 Логика Перед домом играли пятеро детей. Витя выше Коли, Маша выше Ани, а Саша ниже и Коли, и Маши. Выберите утверждения, которые непосредственно следуют из приведённых данных. 1)Витя выше Саши. 2)Саша ниже Ани. 3)Коля и Маша одного роста. 4)Витя самый высокий из всех.
15 18 Логика Учитель математики Иван Петрович обязательно отключает свой телефон, когда ведёт урок. Выберите утверждения, которые следуют из приведённых данных. 1) Если телефон Ивана Петровича включён, значит он не ведёт урок. 2) Если телефон Ивана Петровича выключен, значит он ведёт урок. 3) Если Иван Петрович проводит на уроке контрольную работу, значит его телефон выключен. 4) Если Иван Петрович не ведёт урок, значит его телефон включён.
16 18 Логика Среди тех, кто зарегистрирован в «ВКонтакте», есть школьники из Минска. Среди школьников из Минска есть те, кто зарегистрирован в «Одноклассниках». Выберите утверждения, которые следуют из приведённых данных. 1) Все школьники Минска зарегистрированы либо в «ВКонтакте», либо в «Одноклассниках». 2) В «Одноклассниках» зарегистрированы те школьники из Минска, которые не зарегистрированы в «ВКонтакте». 3) Среди школьников Минска есть те, кто зарегистрирован в «ВКонтакте». 4) Хотя бы один из пользователей «Одноклассников» является школьником из Минска.
17 Логика, подготовка Эта задача на тему имён конкретного класса, в котором проходит урок. Итак, все утверждения, которые мы читаем ниже, о нашем классе. Выберите верные утверждения. 1) Франсуа - не ученик нашего класса. 2) Если мальчик - не ученик нашего класса, то он Франсуа. 3) Если тебя зовут Ира (выберите имя конкретной девочки из вашего класса, которое не бывает мужским), то ты не мальчик.
18 4) Если ты не мальчик, то тебя зовут Ира. 5) Если ты девочка, то тебя зовут не Ира. 6) Если ты Ира, то ты учишься в нашем классе. 7) Если ты подруга Иры, то ты не Ира. 8) Если ты подруга Иры, то ты не Петя. Логика, подготовка
19 Когда какая-нибудь кошка идёт по забору, собака Шарик, живущая в будке возле дома, обязательно лает. Будьте внимательны. Мы знаем только то, что если кошка идёт по забору, то собака Шарик лает. Остального мы НЕ знаем. Важно: собака Шарик лаять может и во многих других случаях! Ответьте на вопросы относительно данного утверждения и поясните свои ответы: 1) Может ли собака Шарик лаять, если кошка не идёт по забору? Логика, подготовка
20 2) Может ли собака Шарик молчать, если кошка идёт по забору? 3) Может ли кошка идти по забору так, чтобы Шарик не лаял? 4) Может ли птичка идти по забору так, чтобы Шарик не лаял? 5) Может ли собака Шарик молчать, если рыжая кошка идёт по забору? 6) Может ли кошка не идти по забору в тот момент, когда лает собака Шарик? Логика, подготовка
21 12 задач с кратким ответом (на 2 меньше, чем в 2015 году). 7 задач с полным решением. Отличия первых 12 задач от базового варианта: Есть задача на движение и дробно- рациональное уравнение - 11 Есть задача на производную «по формулам»- 12 Структура профильного варианта 2016 года
22 Что НЕ определяет ЕГЭ: ЕГЭ не может быть инструментом определения: Качества работы конкретного учителя Качества работы конкретной школы
23 Что может определить ЕГЭ 1)Уровень знаний конкретного ученика (по модулю его психологической устойчивости). 2)Состояние математического образования в стране (в большом регионе) при правильной интерпретации результатов.
24 Условия для успешной сдачи экзамена 1)Способности ученика. 2)Мотивация ученика. 3)Волевые качества и организационные способности ученика. 4)Качество преподавания. От учителя зависит только пункт 4) и частично пункт 3).
25 За что отвечает учитель? Учитель отвечает за то, чтобы те, кто могут и хотят учиться, были хорошо научены. В частности, если сильные ученики класса все плохо написали какую-то конкретную задачу (не освоили конкретную тему) – это недоработка учителя.
26 Необходимые и достаточные условия сдачи ЕГЭ Хорошая работа учителя является необходимым, но не достаточным условием успеха ученика (класса). Поэтому в случае успеха класса, учителя можно обоснованно поощрять. А в случае не успеха - нет никаких рациональных оснований для наказания учителя, так как причины не успеха могут быть разными.
27 Как готовить класс к ЕГЭ? Методические и психологические соображения.
28 Основная проблема большого экзамена Уроки традиционно строятся монотематический, а на экзамене ученик решает задачи по разным темам. Одновременно ученик должен держать в голове множество различных алгоритмов. У него, как правило, нет такого умения.
29 Что делать? Даже если проводить диагностические в работы 11 классе раз в месяц, научить учеников решать задачи по совершенно разным темам трудно. Единственный выход – делать каждый урок политематическим. Как это можно сделать, если нужно изучать новый материал?
30 Что стоит попытаться передоверить ученикам 1. Сформулировать и письменно зафиксировать цели при сдаче экзамена (сдать не на «2» базовый, получить 70 баллов за профильный…) 2. Написать самостоятельный анализ своего состояния на данный момент (сделать это дома или прямо на уроке): такие-то задачи решать умею, такие-то не уверен, логарифмы не понимаю совершенно, в геометрии нужно выучить то-то и то-то…
31 Что стоит попытаться передоверить ученикам 3) Написать план своей подготовки к экзамену (за такие-то темы я браться не буду, все равно не успею, такие-то темы нужно немного повторить, такие- то темы нужно выучить). 4) Доверять ученикам самим готовить материалы к урокам по повторению.
32 Не «переготовиться»! Известно, что в октябре-ноябре 11 класса школьники пишут пробные ЕГЭ лучше, чем в феврале. Происходит привыкание к однообразию заданий, внимание рассеивается, возникают ошибки от невнимательности. Что делать? Варьировать форму заданий, на некоторое время позаниматься другими, не экзаменационными темами.
33 Формы работы на уроке. Устный счет Математические диктанты Поэлементная отработка (решение части задачи). «Листок» по сложным задачам.
34 Цели устного счета Поддержка в рабочем состоянии всех пройденных тем. Обучение концентрации внимания. Навык работы с задачами на разные темы и разные алгоритмы («политематический набор задач»). Налаживание дополнительных связей внутри курса ( в частности, связей «картинка-формула»).
35 Целевая аудитория устного счета. Должна быть активна сильная треть класса. Хорошо, когда подтягивается середина. Слабые ученики на устном счете получают опыт того, что они не знают, а также улавливают части решений, но учитель не тратит время на разжевывание. Ты понял, что забыл эту тему? Отлично! Вот учебник: повторяй.
36 Технология устного счета Устный счёт проводится в начале урока в течение 8-12 минут не реже двух раз в неделю. Задания для устного счета, как правило, даются не по изучаемой теме. Иногда повторяем то, что нам скоро снова понадобится, иногда то, что давно не использовалось и еще долго не будет использоваться. По некоторым темам устный счет нужен и в процессе изучения самой темы. Например, в начале изучения темы «Логарифм» или «Тригонометрические функции острого угла» устный счет нужен для твердого усвоения нового понятия.
37 Технология устного счета Задания в большинстве случаев представляют собой цепочку задач с небольшим варьированием входных данных (примеры даны ниже). Устный счет может содержать несколько цепочек задач, как правило, по разным темам. Задания должны достаточно быстро записываться на доске (то есть быть короткими по условию), чтобы не пропадал темп урока и не рассеивалось внимание.
38 Технология устного счета Отвечают только те, кто хочет. Учитель добивается активности сильной трети класса. Те, кто забыл эту тему, не хочет отвечать, не умеет быстро соображать в уме и т.д., имеет полное право тихо присутствовать на «чужом празднике жизни». Никакие оценки, кроме редких пятёрок за какой-то выдающийся результат, не ставятся. Дав задание, учитель ждет, когда поднимется примерно треть рук, потом сам по очереди назначает отвечающих и выписывает все предлагаемые ответы на доску, никак их не комментируя.
39 Технология устного счета После того, как все предложенные ответы выписаны, начинается их обсуждение. Задача учителя (как и в большинстве случаев на уроке) – задавать вопросы и организовывать обсуждение, а не комментировать, что из предложенного верно, а что нет.
40 Технология устного счета Очень важный пункт. Все неверные ответы дают повод для новых обсуждений: –как мог получиться такой ответ, в чём была ошибка, насколько она типичная? –как можно (если можно) изменить условие задачи, чтобы ответ стал верным? Иными словами, для какой другой аналогичной задачи этот ответ был бы верным. Поэтому за неверный ответ учитель так же благодарен ученику, как и за верный. «Спасибо, Маша, ты совершила типичную ошибку, все на нее посмотрели и теперь не будут ее делать». «Спасибо, Петя, из твоего ответа получилась новая интересная задача».
41 Формы заданий устного счета. Серии задач с небольшим изменением начальных условий, с целью получше вспомнить все нюансы темы. Логарифм 1.doc
42 Устный счет: неравенства Неравенства.doc
43 Задание на понимание производной. Начинать с простейших графиков: 1) линейная производная и квадратичная функция Парабола и прямая.gsp Парабола и 4 прямых.gsp 4 параболы и прямая.gsp
44 Задание на понимание производной. 2) квадратичная производная и функция – кубический многочлен Кубическая парабола.gsp 3) Наклонные асимптоты у функции – на «закуску»
45 База 13. Длина-площадь-объем Деревянный куб покрашен в зеленый цвет. Его распилили на 27 (64; 1000) одинаковых кубиков. Сколько среди них: Кубиков с тремя покрашенными гранями С двумя покрашенными гранями С одной покрашенной гранью Полностью не покрашенных кубиков куб-1. gsp куб-2.gsp
46 Профиль. Задача 15. 1) Считать «картинку» необходимой частью решения тригонометрического уравнения.
47 Задача 15. Не употреблять запись Эта запись не показывает: 1)что серий решений две 2)Что период синуса 2П. Отбирать корни при такой форме записи крайне неудобно.
48 Задача 15. Давать отдельные задачи на отбор корней без решения уравнений.
49 Задача 15. Учиться проверять ответ. Для этого задавать вопрос: сколько корней данная серия решений может иметь на данном отрезке.
50 Задача 15. Постараться, чтобы ученики пользовались и единичной окружностью, и графиками функций.
51 Задача 16. Выбрать для повторения один объект (лучше всего куб) и на нем найти все, что можно. Тем самым решить несколько десятков задач на одну конструкцию. Куб с вращением.gsp Начинать с совсем устных задач, и шаг за шагом усложнять.
52 Задача 16. Задачи с одним объектом хороши тем, что сильные могут идти вперед, придумывая себе все более сложные задачи. Удобно работать на готовых чертежах (отпечатанных на принтере листках), чтобы не тратить время урока на построение.
53 17. О неравенствах. Учиться решать системы неравенств в 10 или 11 классе – поздно. Естественное время для систем неравенств – первое полугодие 9 класса. На чем можно сэкономить время?
54 О неравенствах. Полезно решать «обратные» задачи: Составлять неравенства по данному ответу, заданному в виде множества или картинки. Это один из лучших типов заданий для устного счета в старших классах.
55 20. О задачах с параметром. Знакомить с идейной стороной задач с параметром нужно как можно раньше, самое лучшее с 7 класса. Пример задачи: Исследуйте в каких четвертях в зависимости от b может располагаться точка пересечения графиков функций у=2 х-4 и у=ах-2
56 20. О задачах с параметром. Максимально использовать геометрический язык. «В при изменении параметра… …прямая двигается вдоль оси У … вращается вокруг точки… …центр окружность двигается по прямой… … изменяется величина угла (модуль)…
57 Задача 20. Готовить для сильных учеников отдельные «листки» по задаче С5 с выстроенной последовательностью задач. Каждая группа задач на одну идею. Лучше для начала без сложной техники.
58 Задача С6 Борьба за «арифметический конструктив». Тип задач с такой формулировкой: Приведите пример чисел, обладающих таким-то свойством… Придумайте прогрессию, у которой…
59 Задача С6 «Техника» работы с остатками должна завершать экспериментирование с целыми числами. Нужно привить умение и привычку делать шаг «посмотрим эту задачу с маленькими числовыми значениями и попробуем что-то увидеть».
60 Пример части первого листочка по С6: Число делится на 3. Верно ли, что его квадрат делится на 9? Квадрат числа делится на 3. Верно ли, что само число делится на 3? Квадрат числа делится на 9. Верно ли, что само число делится на 9? Квадрат числа делится на 12. Что с уверенностью можно сказать про само число? Какие остатки при делении на 3 может иметь квадрат целого числа? Сумма квадратов двух чисел делится на 2. Верно ли, что она делится на 4? Сумма квадратов двух чисел делится на 3. Верно ли, что она делится на 9?
61 Оформление решения Задача С1. В задаче есть два задания: а) решить тригонометрическое уравнение, б) отобрать его корни на данном отрезке. Соответственно в ответе должно быть две части: а) все корни уравнения (не забудьте написать пресловутое n принадлежит Z), б) отобранные на данном отрезке корни. Важно написать именно так, чтобы при ошибке в отборе корней вам засчитали 1 балл за решение уравнения. Решение уравнения лучше никак не комментировать и не писать знаков равносильности, так как часто при верном решении выпускники ошибаются в комментариях и ставят проверяющих в тупик. Отбор корней, конечно, можно проводить разными способами, но рекомендуем его провести на окружности. Стоит иметь в виду, что в демоверсии он проведен на окружности, и с очень большой вероятностью так же он будет проведен и в решениях, которые раздадут проверяющим экспертам. Эксперту приятно, когда решение близко к присланному. Так сделайте ему приятное! При этом в начале отбора стоит написать фразу: отберем корни с помощью единичной окружности и затем обязательно на окружности все обозначить: точки – концы отрезка (в данном случае дуги), сами корни и жирным выделить саму дугу. Этот рисунок вы рисуете не для себя, а для проверяющего, на нем все должно быть видно. При последней подготовке рекомендуем повторить или заново выучить формулы приведения – очень большой процент ошибок бывает именно в них, а так же решение простейших уравнений, обидно ошибиться в таких мелочах.
62 Печатные и электронные ресурсы Школьные учебники. Пособия для подготовки к ЕГЭ по математике. mathege.ru (банк) reshuege.ru (с решениями) alexlarin.net ege.yandex.ru (возможность протестироваться) ege-go.ru/math-ege (здесь советы по оформлению)
63 Электронные ресурсы Московский центр непрерывного математического образования: Сайт «Математическое образование: прошлое и настоящее» Сайт, посвященный математическому образованию: Сайт, посвященный преподаванию геометрии:
64 Электронные ресурсы Банк математических задач с решениями: Поисковая система задач по геометрии: Творческий конкурс учителей математики: Семинар учителей математики:
65 Сайт, посвященный олимпиадам: Вероятность в школе: Архив журнала «Квант»: Сайт, посвященный решению математических задач онлайн, на нем множество дидактических материалов в открытом доступе:
66 Карточки Г.Г. Левитаса для коррекции знаний: kartochki-dlja-korekci-znanii-po-matematike-6-9-klas g kartochki-dlja-korekci-znanii-po-matematike-6-9-klas g Сайт учителя Г. Филипповского Сайт методиста и композитора задач А.В. Шаповалова Сайт учителя А.И. Сгибнева Сайт учителя С.А. Беляева Блог учителя математики И.С. Храповицкого: Сайт автора пособий и репетитора И.В. Яковлева:
67 Контакты Шноль Дмитрий Эммануилович
68 Анкета участника 1) Какой институт закончили? 2) Стаж работы, нагрузка (часов) 3) Работаете ли в профильных (математических) классах?
69 Анкета участника 4) Чего вам не хватает в вашей работе (кроме денег, которых, конечно, не хватает)? 5) Назовите интересных преподавателей для учителей, которых вы в последнее время слушали (где?) 6) Участвуют ли ваши школьники в летних (зимних) математических школах? Кто их проводит, как они называются? 7) Что было полезного (если было) в сегодняшней лекции (2-3 предложения)?
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.