Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемОльга Ляпишева
1 Тригонометрические функции
2 Содержание 1. Введение слайд 2. Начало изучения слайд 3. Этапы изучения слайд 4. Группы функций слайд 5. Определение и график синуса слайд 6. Определение и график косинуса слайд 7. Определение и график тангенса слайд 8. Определение и график котангенса слайд 9. Обратные тр-ие функции слайд 10. Основные формулы слайд 11. Значение тригонометрии слайд 12. Используемая литература слайд 13. Автор и составитель слайд
3 В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Со временем в нее начали вкрапляться некоторые аналитические моменты. В первой половине 18-го века произошел резкий перелом, после чего тригонометрия приняла новое направление и сместилась в сторону математического анализа. Именно в это время тригонометрические зависимости стали рассматриваться как функции. Это имеет не только математико-исторический, но и методико- педагогический интерес. В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Со временем в нее начали вкрапляться некоторые аналитические моменты. В первой половине 18-го века произошел резкий перелом, после чего тригонометрия приняла новое направление и сместилась в сторону математического анализа. Именно в это время тригонометрические зависимости стали рассматриваться как функции. Это имеет не только математико-исторический, но и методико- педагогический интерес.
4 В настоящее время изучению тригонометрических функций именно как функций числового аргумента уделяется большое внимание в школьном курсе алгебры и начал анализа. Существует несколько различных подходов к преподаванию данной темы в школьном курсе, и учитель, особенно начинающий, легко может запутаться в том, какой подход является наиболее подходящим. А ведь тригонометрические функции представляют собой наиболее удобное и наглядное средство для изучения всех свойств функций (до применения производной), а в особенности такого свойства многих природных процессов как периодичность. Поэтому их изучению следует уделить пристальное внимание.
5 Кроме того, большие трудности при изучении темы «Тригонометрические функции» в школьном курсе возникают из-за несоответствия между достаточно большим объемом содержания и относительно небольшим количеством часов, выделенным на изучение данной темы. Таким образом, проблема этой исследовательской работы состоит в необходимости устранения этого несоответствия за счет тщательного отбора содержания и разработки эффективных методов изложения данного материала. Объектом исследования является процесс изучения функциональной линии в курсе старшей школы. Предмет исследования - методика изучения тригонометрических функций в курсе алгебры и начала анализа в классе.
6 Таким образом, основной целью создания данной работы является изучение темы: «Тригонометрические функции» в курсе алгебры и математического анализа.
7 Тригонометрические функции Тригонометрические функции математические функции от угла. Они важны при изучении геометрии, а также при исследовании периодических процессов. Обычно тригонометрические функции определяют как отношения сторон прямоугольного треугольника или длины определённых отрезков в единичной окружности. Более современные определения выражают тригонометрические функции через суммы рядов или как решения некоторых дифференциальных уравнений, что позволяет расширить область определения этих функций на произвольные вещественные числа и даже на комплексные числа.математические функции угла геометрии периодических процессов отношения прямоугольного треугольника длины отрезков единичной окружности суммы рядов дифференциальных уравнений вещественные числа комплексные числа
8 В изучении тригонометрических функций можно выделить следующие этапы: I. Первое знакомство с тригонометрическими функциями углового аргумента в геометрии. Значение аргумента рассматривается в промежутке (0 о;90 о). На этом этапе учащиеся узнают, что sin, cos, tg и ctg угла зависят от его градусной меры, знакомятся с табличными значениями, основным тригонометрическим тождеством и некоторыми формулами приведения. II. Обобщение понятий синуса, косинуса, тангенса и котангенса для углов (0 о;180 о). На этом этапе рассматривается взаимосвязь тригонометрических функций и координат точки на плоскости, доказываются теоремы синусов и косинусов, рассматривается вопрос решения треугольников с помощью тригонометрических соотношений. III. Введение понятий тригонометрических функций числового аргумента. IV. Систематизация и расширение знаний о тригонометрических функциях числа, рассмотрение графиков функций, проведение исследования, в том числе и с помощью производной.
9 Существует несколько способов определения тригонометрических функций. Их можно подразделить на две группы: аналитические и геометрические. 1. К аналитическим способам относят определение функции у = sin х как решения дифференциального уравнения f (х)=-c*f(х) или как сумму степенного ряда sin х = х - х 3 /3!+ х 5 /5! - … 2. К геометрическим способам относят определение тригонометрических функций на основе проекций и координат радиус- вектора, определение через соотношения сторон прямоугольного треугольника и определения с помощью числовой окружности. В школьном курсе предпочтение отдается геометрическим способам в силу их простоты и наглядности.
10 Определение синуса Синусом угла х называется ордината точки, полученной поворотом точки (1; 0) вокруг начала координат на угол х (обозначается sin x).
11 Определение косинуса Косинусом угла х называется абсцисса точки, полученной поворотом точки (1; 0) вокруг начала координат на угол х (обозначается cos x).
12 Определение тангенса Тангенсом угла х называется отношение синуса угла х к косинусу угла х.
13 Определение котангенса Котангенсом угла х называется отношение косинуса угла х к синусу угла х.
14 Обратные тригонометрические функции. Для sin х, cos х, tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x»), arcos x, arctg x и arcctg x.
15 А это основные тригонометрические формулы, которыми пользуются учащиеся во время решения тригонометрических задач.
17 Тригонометрия- это наука, о которой можно говорить, рассказывать и писать БЕСКОНЕЧНО! Это одна из составляющих наук на многих факультетах институтов нашей страны!!! Это одна из тех наук, в которую были вложены труды таких ученых, как Евклид, Архимед, Аполлоний, Птолемей, Ф.Виет, И.Бернулли, Н.И.Лобачевский, Д.Е.Меньшов, Н.К.Бари и многих, многих других!!! И в конце своей презентации я хотела бы сказать, что:
18 Используемая литература: А.Н.Колмогоров, А.М.Абрамов «Алгебра и начала анализа». А.Н.Колмогоров, А.М.Абрамов «Алгебра и начала анализа». Ю.М.Колягин, Ю.В.Ткачёв «Алгебра и начала анализа». Ю.М.Колягин, Ю.В.Ткачёв «Алгебра и начала анализа». Г.Бирюков, А.А.Бряндинская «Энциклопедия юного математика» Г.Бирюков, А.А.Бряндинская «Энциклопедия юного математика»
19 Автор и составитель презентации- Петрова Анастасия, ученица школы 4 10А класса,г.Обнинска!
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.