Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемПолина Монастырёва
1 Урок-презентация по математике 5 класс «Обыкновенные дроби»
2 Темы: Урок 1 «Доли» и «Что такое дробь»Урок 1 Урок 2 «Основное свойство дроби» и «Приведение дробей к общему знаменателю»Урок 2 Урок 3 «Сравнение дробей » и «Сложение дробей»Урок 3 Урок 4 «Вычитание, умножение и деление дробей»Урок Обыкновенные дроби
3 Урок 1 Доли Мама купила арбуз и разрезала его на 6 равных частей: бабушке, дедушке, папе, маме, двум детям. Эти равные части называют долями, так как арбуз разделили на 6 равных частей, каждый получил одну шестую арбуза, записывается это так Обыкновенные дроби
4 Что такое дробь Обыкновенные дроби Прямоугольник разделён на 3 равные части, две третьих этого прямоугольника закрашено. Для обозначения такой записи используют специальную «двухэтажную» запись Такую запись называют дробью.
5 Число внизу, под чертой, показывает на сколько равных частей делили. Его называют знаменателем. Число вверху, над чертой, показывает сколько таких частей взяли. Его называют числителем дроби Обыкновенные дроби 5
6 Дробь, числитель которой меньше знаменателя, называют правильной. Дробь, числитель которой больше знаменателя или равен ему, называют неправильной Обыкновенные дроби 6
7 Закрепим: Круг разделили на 6 равных частей, каждая часть составляет круга. Сколько частей круга закрашено? Какая часть квадрата закрашена? Обыкновенные дроби 7
8 Урок 2 Основное свойство дроби Обыкновенные дроби Разделим круг на 4 равные части и 3 из них закрасим. Закрашенная часть составляет круга. Если теперь каждую четвёртую круга разделить ещё на 2 равные части, то получится круг разделён на 8 равных частей и 6 из них закрашено.Значит теперь закрашено круга.
9 В обоих случаях закрашена одна и та же часть круга, а значит дроби выражают одну и ту же величину. Такие дроби называются равными. ЗАПОМНИТЕ: Если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Что бы сократить дробь, её числитель и знаменатель нужно разделить на их общий делитель Обыкновенные дроби
10 Обыкновенные дроби Приведение дробей к общему знаменателю При решение задач дроби, имеющие разные знаменатели приходится заменять равными им дробями с одинаковыми знаменателями, при этом стараются подобрать наименьший общий знаменатель.
11 Например, приведём к общему знаменателю дроби. Больший знаменатель - число 24 - делится на меньший, поэтому его можно взять его в качестве общего знаменателя данных дробей. Теперь нужно привести дробь к знаменателю 24. Найдём дополнительный множитель 24:8=3. Значит, Обыкновенные дроби
12 Обыкновенные дроби ВАЖНО! в качестве общего знаменателя дробей всегда можно взять произведение их знаменателей ЗАКРЕПИМ Приведите к общему знаменателю дроби: = ; = В начало
13 Обыкновенные дроби Урок 3 Сравнение дробей Сравнить 2 неравные дроби- это значит установить, какая из них больше, а какая- меньше. Если разделим яблоко на 5 равных долей, то 2 доли составят меньшую часть яблока, чем 3 такие же доли. Значит <
14 Обыкновенные дроби Рассмотренный пример позволяет сделать вывод: из двух дробей с одинаковым знаменателем больше та, у которой больше числитель, и меньше та, у которой числитель меньше. ВАЖНО! Чтобы сравнивать дроби с разными знаменателями, их сначала нужно привести к общему знаменателю.
15 Обыкновенные дроби Проверим себя: Сравните дроби:
16 Обыкновенные дроби Сложение дробей С дробными числами, как и с натуральными можно выполнять арифметические действия. Рассмотрим сначала сложение дробей
17 Обыкновенные дроби Что бы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежний. Что бы складывать дроби с разными знаменателями их сначала нужно привести к общему знаменателю.
18 Обыкновенные дроби Закрепим Сложите дроби: и) В начало
19 Обыкновенные дроби Урок 4 Вычитание дробей Вычитание дробных чисел, как и натуральных, определяется на основе действий сложения: вычесть из одного числа другое- это значит найти такое число, которое при сложении со вторым даёт первое. Например:
20 Обыкновенные дроби Запомните! Чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним. Важно! Чтобы находить разность дробей с разными знаменателями, их сначала нужно привести к общему знаменателю.
21 Обыкновенные дроби Закрепим Найдите разность:
22 Обыкновенные дроби Умножение дробей Запомните! Что бы умножить дробь на дробь, нужно числитель умножить на числитель, а знаменатель на знаменатель.
23 Деление дробей Произведение взаимообратных дробей равно Обыкновенные дроби
24 Отсюда понятно правило деления дробей: Чтобы разделить дробь на дробь, нужно делимое умножить на дробь, обратную делителю. Например, Обыкновенные дроби
25 Закрепим Найдите произведение: Выполните деление: В начало Обыкновенные дроби
26 Обыкновенные дроби Спасибо за внимание Презентация создана по учебнику МАТЕМАТИКА 5 класс (под редакцией Г.В. Дорофеева, И.Ф.Шарыгина, 12-е издание Москва «Просвящение») Автор презентации: Альмухаметова Д.Ш.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.