Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемИрина Кобылина
1 Призентация на тему: Электрический ток
2 Электрическим током называется упорядоченное движение электрических зарядов. Носителями тока могут быть электроны, ионы, заряженные частицы. Если в проводнике создать электрическое поле, то в нем свободные электрические заряды придут в движение – возникает ток, называемый током проводимости. Если в пространстве перемещается заряженное тело, то ток называется конвекционным. 1. Понятие о токе проводимости. Вектор тока и сила тока
3 Электрический ток по поверхности проводника может быть распределен неравномерно, поэтому в некоторых случаях пользуются понятием плотность тока j. Средняя плотность тока равна отношению силы тока к площади поперечного сечения проводника. Где j – изменение тока; S – изменение площади.
4 Плотность тока
5 В 1826 г. немецкий физик Ом опытным путем установил, что сила тока J в проводнике прямо пропорциональна напряжению U между его концами Где k – коэффициент пропорциональности, называемый электропроводностью или проводимостью;[k] = [См] (сименс). Величина называется электрическим сопротивлением проводника. закон Ома для участка электрической цепи, не содержащей источника тока 2. Дифференциальная форма закона Ома
6 Закон Ома для однородного участка цепи. Дифференциальная форма закона Ома.
7 3. Последовательное и параллельное соединение проводников Последовательное соединение проводников I=const (по закону сохранения заряда); U=U 1 +U 2 R общ =R 1 +R 2 +R 3 R общ =R i R=N*R 1 (Для N одинаковых проводников) R1R1 R2R2 R3R3
8 Параллельное соединение проводников U=const I=I 1 +I 2 +I 3 U 1 =U 2 =U R1R1 R2R2 R3R3 Для N одинаковых проводников
9 4. Причина появления электрического тока в проводнике. Физический смысл понятия сторонних сил Для поддержания постоянного тока в цепи, необходимо разделять положительные и отрицательные заряды в источнике тока, для этого на свободные заряды должны действовать силы неэлектрического происхождения, называемые сторонними силами. За счет создаваемого сторонними силами поля электрические заряды движутся внутри источника тока против сил электростатического поля.
10 Благодаря этому на концах внешней цепи поддерживается разность потенциалов и в цепи идет постоянный электрический ток. Сторонние силы вызывают разделение разноименных зарядов и поддерживают разность потенциалов на концах проводника. Добавочное электрическое поле сторонних сил в проводнике создается источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами).
11 ЭДС источника тока Физическая величина равная работа сторонних сил по перемещению единичного положительного заряда между полюсами источника называется электродвижущей силой источника тока (ЭДС).
12 5. Вывод закона Ома для замкнутой электрической цепи Пусть замкнутая электрическая цепь состоит из источника тока с, с внутренним сопротивлением r и внешней части, имеющей сопротивление R. R – внешнее сопротивление; r – внутреннее сопротивление. где – напряжение на внешнем сопротивлении; А – работа по перемещению заряда q внутри источника тока, т. е. работа на внутреннем сопротивлении.
13 6. Первое и второе правила Кирхгофа Первое правило Кирхгофа является условием постоянства тока в цепи. Алгебраическая сумма сил тока в узле разветвления равна нулю гдеn – число проводников; Ii – токи в проводниках. Токи, подходящие к узлу, считаются положительными, выходящие из узла – отрицательными. Для узла А первое правило Кирхгофа запишется:
14 Первое правило Кирхгофа Узлом электрической цепи называется точка в которой сходится не менее трех проводников. Сумма токов сходящихся в узле равна нулю – первое правило Кирхгофа. Первое правило Кирхгофа является следствием закона сохранения заряда – в узле электрический заряд накапливаться не может.
15 Второе правило Кирхгофа Второе правило Кирхгофа является следствием закона сохранения энергии. В любом замкнутом контуре разветвленной электрической цепи алгебраическая сумма Ii на сопротивления Ri соответствующих участков этого контура равна сумме приложенных в нем ЭДС i
16 7. Контактная разность потенциалов. Термоэлектрические явления Электроны, обладающие наибольшей кинетической энергией, могут вылететь из металла в окружающее пространство. В результате вылета электронов образуется электронное облако. Между электронным газом в металле и электронным облаком существует динамическое равновесие. Работа выхода электрона – это работа, которую нужно совершить для удаления электрона из металла в безвоздушное пространство. Поверхность металла представляет собой двойной электрический слой, подобный очень тонкому конденсатору.
17 Разность потенциалов между обкладками конденсатора зависит от работы выхода электрона. Где е – заряд электрона; – контактная разность потенциалов между металлом и окружающей средой; А – работа выхода (электрон-вольт – Э-В). Работа выхода зависит от химической природы металла и состояния его поверхности (загрязнение, влага).
18 Законы Вольта: 1. При соединении двух проводников, изготовленных из различных металлов, между ними возникает контактная разность потенциалов, которая зависит только от химического состава и температуры. 2. Разность потенциалов между концами цепи, состоящей из последовательно соединенных металлических проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников. Она равна контактной разности потенциалов, возникающих при непосредственном соединении крайних проводников.
19 Мерой процесса ионизации является интенсивность ионизации, измеряемая числом пар противоположно заряженных частиц, возникающих в единичном объеме газа за единичный промежуток времени. Ударной ионизацией называется отрыв от атома (молекулы) одного или нескольких электронов, вызванный соударением с атомами или молекулами газа электронов или ионов, разогнанных электрическим полем в разряде.
20 Рекомбинация - это соединение электрона с ионом в нейтральный атом. Если действия ионизатора прекращается, газ снова становится диалектиком. электрон ион
21 1. Несамостоятельный газовый разряд – это разряд, существующий только под действием внешних ионизаторов. Вольтамперная характеристика газового разряда: по мере увеличения U растет число заряженных частиц, достигающих электрода и возрастает ток до I=I к, при котором все заряженные частицы достигают электродов. При этом U=U к ток насыщения Где е – элементарный заряд; N 0 – максимальное число пар одновалентных ионов, образующихся в объеме газа за 1 с.
22 2. Самостоятельный газовый разряд – разряд в газе, который сохраняется после прекращения действия внешнего ионизатора. Поддерживается и развивается за счет ударной ионизации. Несамостоятельный газовый разряд переходит в самостоятельный при Uз – напряжении зажигания. Процесс такого перехода называется электрическим пробоем газа.
23 Коронный разряд – возникает при высоком давлении и в резко неоднородном поле с большой кривизной поверхности, применяется при обеззараживании семян сельскохозяйственных культур. Тлеющий разряд – возникает при низких давлениях, используется в газосветных трубках, газовых лазерах. Искровой разряд – при Р=Р атм и при больших электрического поля - молния (токи до нескольких тысяч Ампер, длина – несколько километров). Дуговой разряд – возникает между близко сдвинутыми электродами,(Т=3000 °С – при атмосферном давлении. Используется как источник света в мощных прожекторах, в проекционной аппаратуре.
24 Плазма – особое агрегатное состояние вещества, характеризующееся высокой степенью ионизации его частиц. Плазма подразделяется на: – слабо ионизированную ( – доли процента – верхние слои атмосферы, ионосфера); – частично ионизированную (несколько %); – полностью ионизированную (солнце, горячие звезды, некоторые межзвездные облака). Искусственно созданная плазма используется в газоразрядных лампах, плазменных источниках электрической энергии, магнитодинамических генераторах.
25 Эмиссионные явления: 1. Фотоэлектронная эмиссия – вырывание под действием света электронов с поверхности металлов в вакууме. 2. Термоэлектронная эмиссия – испускание электронов твердыми или жидкими телами при их нагревании. 3. Вторичная электронная эмиссия – встречный поток электронов с поверхности, бомбардируемой электронами в вакууме. Приборы, основанные на явлении термоэлектронной эмиссии, называются электронными лампами.
26 Многие жидкости очень плохо проводят электрический ток (дистиллированная вода, глицерин, керосин и т.д.). Водные растворы солей, кислот и щелочей хорошо проводят электрический ток. Электролиз – прохождение тока через жидкость, вызывающее выделение на электродах веществ, входящих в состав электролита. Электролиты – вещества, обладающие ионной проводимостью. Ионная проводимость – упорядоченное движение ионов под действием электрического поля. Ионы – атомы или молекулы, потерявшие или присоединившие к себе один или несколько электронов. Положительные ионы – катионы, отрицательные – анионы.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.