Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемЛидия Панаева
1 Теория электролитической диссоциации. Теория электролитической диссоциации. Протолитическая теория кислот и оснований. Специальность: «Лабораторная диагностика» диагностика» Дисциплина: «Химия» Преподаватель:Шакурова Н.С. Преподаватель: Шакурова Н.С г. ГАОУ СПО «Казанский медицинский колледж» Электронный дидактический материал информационного типа на тему:
2 Содержание ЭДМ 1.Введение. 2. Требования ГОС. 3. Цели занятия. 4.Электролиты. Неэлектролиты 5.С.Аррениус-основоположник теории электролитической диссоциации 6. Основные положения электролитической диссоциации 7. Гидратация ионов 8. Механизм электролитической диссоциации. 9. Степень диссоциации (ионизации) 10. Сильные и слабые электролиты 11.Факторы, влияющие на диссоциацию 12. Константа диссоциации (ионизации)
3 Содержание ЭДМ 13. Диссоциация кислот 14. Диссоциация оснований 15. Диссоциация амфотерных гидроксидов 16. Диссоциация солей 17. Электролитическая диссоциация комплексных и двойных солей 18. Протонная теория кислот и оснований 19. Диссоциация воды. рН 20. Реакции обмена в водных растворах электролитов 21. Ионные реакции и уравнения 22. Термины и определения 23. Литература.
4 Введение Электронный дидактический материал на тему: «Теория электролитической диссоциации. Протолитическая теория кислот и оснований» предназначен для проведения контроля знаний, практических умений и навыков, самостоятельной работы студентов медицинских училищ и колледжей СМОУ РТ и РФ. Рекомендации по работе с ЭДМ: 1. Ознакомьтесь с требованиями ГОС по данной теме 2. Изучите информационный материал занятия. 3. Выучите термины и определения. 4. Выполните задания для закрепления знаний по учебнику Ерохин Ю.М. Сборник задач и упражнений - стр.-55 вопросы 1-12; упр.1-14.
5 Требования ГОС к уровню подготовки специалистов в области химии для специальности «Лабораторная диагностика» После изучения темы «Теория электролитической диссоциации. Протолитическая теория кислот и оснований». студент должен ЗНАТЬ: основные положения теории электролитической диссоциации; понятия: электролитическая диссоциация, сильный и слабый электролит, степень и константа диссоциации, кислота и основания Бренстеда; роль электролитов в процессах жизнедеятельности организма.
6 Цели занятия Учебная: Учебная: добиться прочного усвоения системы знаний, формирование практических умений и навыков. Развивающая: Развивающая: формирование навыков самообразования, самореализации личности и развитие речи, мышления, памяти. Воспитательная: Воспитательная: привитие умений и навыков учебной работы и коллективного труда. Формирование у студентов целостного миропонимания и современного научного мировоззрения.
7 Электролиты. Неэлектролиты Водные растворы солей, кислот и оснований проводят электрический ток. Аналогично ведут себя расплавы солей и щелочей. В то же время водные растворы и расплавы многих органических веществ, например сахарозы, глюкозы, ацетона, этилового спирта и других, не проводят электрический ток.
8 Электролиты. Неэлектролиты По способности проводить электрический ток в водном растворе или в расплаве все вещества можно разделить на электролиты и неэлектролиты. Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.
9 Электролиты. Неэлектролиты К электролитам относятся соли, кислоты и основания. В молекулах этих веществ имеются ионные или ковалентные сильно полярные химические связи.
10 Неэлектролитами называют вещества, водные растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся, например, кислород, водород, многие органические вещества. В молекулах этих веществ существуют ковалентные неполярные или малополярные связи. Электролиты. Неэлектролиты
11 В 1887 г. Шведский учёный С.Аррениус для объяснения особенностей водных растворов веществ предложил теорию электролитической диссоциации. В дальнейшем эта теория была развита многими учёными, в том числе И.А. Каблуковым и В.А. Кистяковским. Сванте Аррениус С.Аррениус- основоположник теории электролитической диссоциации
12 Основные положения электролитической диссоциации 1. Молекулы электролитов при растворении в воде или расплавлении распадаются на ионы. Процесс распада молекул электролитов на ионы в водном растворе или в расплаве называется электролитической диссоциацией или ионизацией.
13 Основные положения электролитической диссоциации Ионы это атомы или группы атомов, имеющие положительный или отрицательный заряд. Ионы могут быть простые (Na +, Mg 2+, S 2-, Cl - ): сложные (SO 3 2-, NH 4 +, SO 4 2-, PO 4 3- ).
14 Основные положения электролитической диссоциации 2. В растворе или расплаве электролитов ионы движутся хаотически. При пропускании через раствор или расплав электрического тока положительно заряженные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательно заряженные ионы движутся к положительно заряженному электроду (аноду).
15 Основные положения электролитической диссоциации Положительные ионы называются катионами, отрицательные ионы- анионами. К катионам относятся ион водорода Н +, ион аммония NH 4 +, ионы металлов Na +, K +, Fe 2 +,Fe 3 +, Al 3+, катионы основных солей CuOH +, A1(OH) 2 +, FeOH 2+ К анионам относятся гидроксид-ион ОН -, ионы кислотных остатков I -, Вr -, Сl -, NO 3 -, SO 3 2-, Сr 2 О 7 ; кислых солей НСО 3 -, Н 2 РО 4 -, Н 2 РО 4 -
16 3. Диссоциация многих электролитов процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (ионизация или диссоциация) и соединение ионов в молекулы (ассоциация или поляризация). Основные положения электролитической диссоциации
17 Диссоциацию молекул электролитов выражают уравнениями, в которых ставят знак обратимости ( ). В левой части уравнения электролитической диссоциации записывают формулу молекулы электролита, а в правой формулы образующихся ионов.
18 Основные положения электролитической диссоциации Уравнение диссоциации азотистой кислоты HNO 2 записывается таким образом: ионизация (диссоциация) НNO 2 H + + NO 2 - поляризация (ассоциация) Общая сумма зарядов катионов равна общей сумме зарядов анионов, так как растворы и расплавы нейтральны.
19 Гидратация ионов Электролитическая диссоциация в растворе происходит за счет сложного физико- химического взаимодействия молекул растворителя с электролитом.
20 Гидратация ионов Согласно химической теории растворов Д.И. Менделеева, при растворении веществ в воде происходит химическое взаимодействие растворенного вещества с молекулами воды.
21 Гидратация ионов В результате взаимодействия растворенного вещества с молекулами воды образуются химические соединения -гидраты. И.А. Каблуков развил это положение Д.И. Менделеева, впервые высказав мысль о возможной гидратации не только молекул, но и ионов, которые особенно склонны к гидратации. Соединяясь с молекулами воды, ионы становятся гидратированными и более устойчивыми.
22 Механизм электролитической диссоциации. I. Диссоциация электролитов с ионной связью. При растворении в воде ионных соединений, например, хлорида натрия, его ионы, находящиеся в узлах кристаллической решетки, взаимодействуют с диполями воды. При этом положительные полюсы молекул воды притягиваются к отрицательным хлорид-ионам С1 -, отрицательные полюсы - к положительным ионам натрия Na +.
23 Между ионами электролита и диполями воды возникают силы взаимного притяжения, которые оказываются прочнее межионных связей в кристалле. В результате связь между ионами в кристалле ослабляется, кристаллическая решетка ионного соединения разрушается, и ионы в гидратированном виде переходят в раствор NaCl Na + + Cl - Механизм электролитической диссоциации.
24 При растворении в воде веществ НС1 происходит ориентация диполей воды и возникают междипольные связи. В результате такого диполь- дипольного взаимодействия изменяется характер химической связи в молекуле НС1. Механизм электролитической диссоциации II. Диссоциации электролитов с полярной ковалентной связью.
25 Связь в молекуле электролита становится более полярной, а затем превращается в ионную. Эта связь легко разрывается с образованием гидратированных ионов, которые переходят в раствор. Главной причиной диссоциации молекул электролитов на ионы в водных растворах является гидратация ионов. Механизм электролитической диссоциации
26 Степень диссоциации (ионизации) В водных растворах некоторые электролиты полностью распадаются на ионы. Другие электролиты распадаются на ионы частично. Большая часть их молекул остается в растворе в недиссоциированном виде. В растворах таких электролитов одновременно присутствуют ионы и недиссоциированные молекулы растворенного вещества.
27 Степень диссоциации (ионизации) Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита используют понятие «степень электролитической диссоциации». Степень диссоциации обозначают буквой «α» и часто выражают в процентах, реже в долях единицы.
28 Степень диссоциации (ионизации) Степень электролитической диссоциации равна отношению числа молекул, которые распались на ионы, к общему числу растворенных молекул электролита: где n - число молекул, распавшихся на ионы; N - общее число растворенных молекул.
29 Степень диссоциации (ионизации) Степень диссоциации зависит от природы растворителя и природы растворенного вещества. Одно и то же вещество в одних растворителях может вести себя как электролит, в других как неэлектролит.
30 Степень диссоциации (ионизации) Молекулы серной кислоты H 2 SO 4 хорошо диссоциируют в воде, слабее в этаноле и совсем не диссоциируют в бензоле. Это объясняется тем, что вода является одним из наиболее полярных растворителей, этанол слабо полярный, а бензол неполярный растворитель.
31 Сильные электролиты это такие электролиты, для которых степень диссоциации в водных растворах равна 1 (100%). К сильным электролитам относятся: 1. Практически все соли; 2. Кислоты - НС1О 4, НС1О 3, HNO 3, H 2 SO 4, HMnO 4, H 2 Cr 2 О 7, HI, HBr, НС1, H 2 CrО 4 ; 3. Щелочи- LiOH, NaOH, KOH, CsOH, RbOH, Ca(OH) 2,Sr(OH) 2, Ba(OH) 2. Сильные и слабые электролиты
32 Слабые электролиты это такие электролиты, для которых степень диссоциации в водных растворах меньше 1 (100%). Сильные и слабые электролиты
33 К слабым электролитам относятся: 1. Слабые кислоты - НС1О 2, НС1О, HNO 2, H 2 CO 3, H 2 SiО 3, H 3 PO 4, HF, H 3 BO 3 ; CH 3 COOH, H 3 S, HCN 2. Слабые малорастворимые в воде основания и амфотерные гидроксиды: Fe(OH) 2 Fe(OH) 3 Cu(OH) 2 Pb(OH) 2, A1(OH) 3, Cr(OH) 3 ; 3. Вода Н 2 О. 4. NH 4 OH. Сильные и слабые электролиты
34 Принадлежность вещества к сильным и слабым электролитам нельзя связывать с его растворимостью. Например, хлорид серебра AgCl имеет очень низкую растворимость в воде, однако вся растворившаяся соль находится в растворе в виде ионов Ag + и С1 -, поэтому AgCl относят к числу сильных электролитов. Сильные и слабые электролиты
35 Газ аммиак NH 3 очень хорошо растворяется в воде, но только часть молекул NH 3 взаимодействуют с водой с образованием ионов NH 4 + и ОН -. Значит гидроксид аммония является слабым электролитом. Сильные и слабые электролиты
36 Степень ионизации электролита зависит от его концентрации в растворе. Разбавление раствора ведет к повышению степени диссоциации электролита, потому что с уменьшением его концентрации уменьшается вероятность встречи ионов в растворе. Повышение концентрации электролита в растворе понижает степень его ионизации. Факторы, влияющие на диссоциацию
37 Степень ионизации зависит и от изменения температуры раствора электролита. При повышении температуры степень диссоциации электролита увеличивается. Факторы, влияющие на диссоциацию
38 С повышением температуры энергия молекул увеличивается, химическая связь в них ослабляется, что облегчает процесс диссоциации электролитов, то есть их распад на ионы. И наоборот, понижение температуры уменьшает степень ионизации электролита. Факторы, влияющие на диссоциацию
39 На степень диссоциации влияет добавление одноименных ионов к раствору слабого электролита. Например, если к раствору уксусной кислоты СН 3 СО - ОН прилить раствор ацетата натрия CH 3 COONa, то равновесие обратимого процесса диссоциации уксусной кислоты СН 3 СООН СН 3 СОО - + Н + согласно принципу Ле-Шателье смещается влево. Поэтому степень диссоциации уксусной кислоты уменьшается. Факторы, влияющие на диссоциацию
40 Константа диссоциации (ионизации) Для количественной характеристики слабых электролитов применяют константу диссоциации (К). Любая обратимая реакция характеризуется константой равновесия. В случае диссоциации константу равновесия называют константой диссоциации (Кд) или константой ионизации.
41 Для слабого электролита общей формулы: A n B m A n B m пА m+ + mB n- согласно закону действия масс, в состоянии равновесия, константа диссоциации равна: Кд=[А m+ ] n [B n- ] m [A n B m ] Константа диссоциации (ионизации)
42 Величина константы ионизации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в его растворе, тем сильнее электролит. Например: К д (СН 3 СООН)=[СН 3 СОО - ] [Н + ] = ; [СН 3 СООН] К д (HCN)= [Н + ] [CN - ] = при 25°С. [HCN] Константа диссоциации (ионизации)
43 Из значений констант диссоциации этих кислот видно, что уксусная кислота приблизительно в раз сильнее диссоциирует, чем циановодородная кислота. Константа диссоциации не зависит от концентрации раствора. Константа диссоциации (ионизации)
44 Для любой концентрации раствора электролита величина константы ионизации постоянна, но изменяется с изменением температуры. Понятие константы диссоциации для сильных электролитов не имеет смысла, так как в водных растворах они полностью диссоциируют на ионы. Константа диссоциации (ионизации)
45 Диссоциация кислот Кислоты это электролиты, которые при диссоциации образуют только один вид катионов катионы водорода Н+. Например: H 2 SO 4 = 2Н + + SO 4 2- Слабые многоосновные кислоты (H 2 SO 3, Н 2 СО 3, H 2 S, Н 3 РО 4 ) диссоциируют ступенчато и характеризуются несколькими константами диссоциации.
46 Число ступеней диссоциации равно основности слабой кислоты. На первой ступени диссоциации сероводородной кислоты: H 2 S Н + + HS -, К΄ д =[Н + ] [HS - ] = 6, [H 2 S] Диссоциация кислот
47 На второй ступени диссоциации от сложного гидросульфид-иона HS - отщепляется катион водорода Н + по уравнению: HS - Н + + S 2-, К΄΄ д (HS - )= [Н + ] [S 2- ] = 1, [HS - ] Диссоциация кислот
48 К΄΄ д (HS - )=[Н + ] [S 2- ] = 1, [HS - ] Сравнение величин К΄ д и К˝ д показывает, что диссоциация по второй ступени протекает в значительно меньшей степени, чем по первой.
49 Диссоциация оснований Основания это электролиты, которые при диссоциации образуют только один вид анионов гидроксид-ионы ОН -. Например: NaOH = Na + + OH -
50 Слабые многокислотные основания диссоциируют ступенчато и характеризуются несколькими константами диссоциации. Число ступеней диссоциации равно кислотности слабого основания. Рb(ОН) 2 РbОН 2 + +ОН - д =[РbОН + ] [ОН - ] =9, (t о =25 о С ) [Рb(ОН) 2 ] Диссоциация оснований
51 На второй ступени диссоциации происходит отщепление гидроксид-иона от сложного катиона РbОН + Рb(ОН) 2 РbОН 2 + +ОН - Диссоциация оснований
52 Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями, то есть имеют двойственные свойства. Двойственный характер амфотерных гидроксидов объясняет теория электролитической диссоциации. Диссоциация амфотерных гидроксидов
53 Амфотерные гидроксиды это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН -, т. е. диссоциируют по типу кислоты и по типу основания. 2Н + +ZnO 2 2- H 2 ZnO 2 Zn(OH) 2 Zn 2+ +2ОН - диссоциация в растворе диссоциация по типу кислоты Zn(OH) 2 по типу основания (осадок) Диссоциация амфотерных гидроксидов
54 Диссоциация солей Нормальные соли сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка. Например: Al 2 (SO 4 ) 3 2А SО 4 2-
55 Диссоциация солей Кислые соли сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток. Например: NaHCO 3 Na + + НСО 3 - (α = 1) Гидрокарбонат-ион в незначительной степени диссоциирует по уравнению: НСО 3 - Н + + СО 3 - (α < 1)
56 Диссоциация солей В водных растворах кислых солей содержатся следующие ионы: катионы металла Ме n+, катионы водорода Н +, сложные анионы, содержащие атомы водорода и анионы кислотного остатка А х-.
57 Диссоциация солей Основные соли электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы, состоящие из атомов металла и гидроксогрупп ОН -. Fe(OH) 2 Cl Fe(OH) Cl - (α = 1) Fe(OH) 2 + FeOH 2+ + ОH - (α < 1) Fe(OH) 2+ Fe 3+ + OH - (α < 1)
58 Основные соли, как и кислые соли, сначала диссоциируют как сильные электролиты. Незначительно диссоциируют сложные ионы. В водных растворах основных солей находятся ионы: катионы металла Ме n+, сложные катимы, содержащие гидроксогруппы, анионы кислотного остатка Ас х- и анионы гидроксогрупп ОН -. Диссоциация солей
59 Электролитическая диссоциация комплексных и двойных солей Электролитическая диссоциация комплексных солей в водных растворах происходит по двум ступеням. Iступень: диссоциация на комплексный и простой ионы с сохранением внутренней сферы комплекса. IIступень: диссоциация внутренней сферы, приводящая к разрушению комплекса.
60 Диссоциация по первой ступени происходит по типу диссоциации сильных электролитов, а диссоциация комплексного иона по типу диссоциации слабых электролитов. Например: [Ag(NH 3 ) 2 ]Cl [Ag(NH 3 ) 2 ] + +C1 - (сильный электролит) [Ag(NH 3 ) 2 ] + Ag + + 2NH 3 0 (слабый электролит) Электролитическая диссоциация комплексных и двойных солей
61 Двойные соли могут существовать только в твердом виде, так как в водном растворе они диссоциируют на катионы двух металлов (или аммония) и анионы кислотного остатка: KA1(SO 4 ) 2 = К + + А SO 4 2- NH 4 Fe(SO 4 ) 2 = NH Fe SO 4 2- Электролитическая диссоциация комплексных и двойных солей
62 Протонная теория кислот и оснований В 1923 г. И. Бренстед и Т. Лоури разработали протонную теорию кислот и оснований. Кислотой называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны отдавать протон, т. е. быть донором протонов; основанием называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны присоединять протоны, т.е. быть акцептором протонов.
63 Протонная теория кислот и оснований Определения кислот и оснований позволяют включать в их число не только молекулы, но и ионы. Например, карбонат-ион согласно протонной теории является основанием, так как в водном растворе он присоединяет протон: CO Н + НСО 3 -
64 Протонная теория кислот и оснований Согласно протонной теории кислоты подразделяют на три типа: 1)нейтральные кислоты, например НС1, Н 2 SО 4 Н 3 РО 4 H 2 SO 4 Н + + HSO 4 - 2)катионные кислоты, представляющие собой положительные ионы, например NH 4 + Н 3 О + : NH 4 + NH 3 + Н +
65 Протонная теория кислот и оснований 3)анионные кислоты, представляющие собой отрицательные ионы, например HSO 4 -, Н 2 РО 4 -, Н 2 РО 2- H 2 SO 4 - Н + + SO 4 2- Подобного типа классификация имеется и для оснований: 1)нейтральные основания, например HCl, NH 3, Н 2 О, С 2 Н 5 ОН NH 3 + Н + NH 4 +
66 Протонная теория кислот и оснований 2)анионные основания, представляющие собой отрицательные ионы, например: С1 -, СН 3 СОО -, ОН - : СН 3 СОО - + Н + СН 3 СООН 3)катионные основания, представляющие собой положительные ионы, например H 2 NNH 3 +.
67 Протонная теория кислот и оснований Растворители типа воды, жидкого аммиака, а также анионы многоосновных кислот, которые могут быть и донорами и акцепторами протонов, являются амфолитами. Например, в реакции Н 2 О + NH 3 ОН - + NH 4 + молекула воды отдает протон и является кислотой.
68 Протонная теория кислот и оснований В реакции Н 2 О + НС1 Н 3 О + + Сl - молекула воды присоединяет протон и является основанием. Таким образом вода типичный амфолит.
69 Протонная теория кислот и оснований Процесс диссоциации (ионизации) вещества происходит в контакте с растворителем. При этом растворитель выполняет функцию кислоты или функцию основания. Например, при растворении аммиака вода кислота NH 3 + Н 2 О NH ОН - При растворении водородфторида вода основание HF + Н 2 О F - + Н 3 О +
70 Протонная теория кислот и оснований Если сродство к протону у растворителя больше, чем у растворенного вещества, то растворитель выступает как основание (сродство к протону Н 2 О больше сродства к протону HF), а если оно меньше как кислота (сродство к протону Н 2 О меньше сродства к протону NH 3 ).
71 Протонная теория кислот и оснований Согласно протонной теории, отдавая протон, кислота превращается в основание, которое называют сопряженным этой кислоте: I.(кислота) 1 (сопряженное основание) 1 + Н + т. е. каждой кислоте соответствует сопряженное основание. Наоборот, основание, присоединяя протон, превращается в сопряженную кислоту: II.(основание) 2 + Н + (сопряженное основание) 2
72 Кислотно - основное равновесие Протон в растворах не существует в свободном виде, кислота может отдать протон только основанию, которой приняв протон, становится кислотой. Поэтому, согласно протонной теории имеет место кислотно-основное (КО) равновесие, обусловленное переносом протона (сумма процессов I и II по Гессу): III. (кислота) 1 + (основание) 2 (кислота) 2 + (основание) 1
73 Кислотно - основное равновесие Для краткости обратимый процесс кислотно-основного взаимодействия называют КО-равновесием. Реакции нейтрализации, ионизации, гидролиза с точки зрения протонной теории являются частными случаями КО-равновесий.
74 Кислотно - основное равновесие Реакция I типа СН 3 СООН + Н 2 О СН 3 СОО - + Н 3 О +, протекающая в прямом направлении, представляет ионизацию уксусной кислоты, в обратном же направлении нейтрализацию какого-либо ацетата, например, натрий ацетата сильной кислотой.
75 Кислотно - основное равновесие Реакция II типа NН Н 2 О NH 3 + H 3 O +, протекающая в прямом направлении, показывает гидролиз какой-либо соли аммония, а в обратном направлении нейтрализацию аммиака сильной кислотой. В этих кислотно-основных равновесиях вода играет роль основания.
76 Кислотно - основное равновесие Будучи амфолитом в других кислотно- основных равновесиях, она может выполнять и роль кислоты, например: Н 2 О + СН 3 СОО - СН 3 СООН + ОН - Здесь прямая реакция кислотно-основного равновесия представляет гидролиз ацетата, а обратная реакцию нейтрализации уксусной кислоты сильным основанием.
77 Кислотно - основное равновесие Протолитические кислотно-основные равновесия III типа могут иметь место не только в воде, но и в других растворителях, например, в жидком аммиаке: СН 3 СООН + NН 3 СН 3 СОО - + NH 4 + в безводном HF: С 2 Н 5 ОН + HF С 2 Н 5 ОН F -
78 Кислотно - основное равновесие Теория Бренстеда, как и теория Аррениуса, не применима к веществам, проявлявшим функцию кислоты, но не содержащих водорода, например, галогенидам бора, алюминия, кремния, олова. Поэтому более общей является электронная теория кислот и оснований Льюиса.
79 Диссоциация воды. рН Вода как слабый электролит в незначительной степени диссоциирует на ионы Н + и ОН -, которые находятся в равновесии с недиссоциированными молекулами Н 2 О -Н + + ОН -. Опытом установлено, что в 1 л воды при комнатной температуре (22°С) диссоциации подвергаются лишь моль и при этом образуется моль/л ионов Н + и моль/л ионов ОН -.
80 Диссоциация воды. рН Произведение концентраций ионов водорода и гидроксид-ионов в воде называется ионным произведением воды (обозначается К в ). При определенной температуре К в величина постоянная. Численное значение его при температуре 22°С равно : К в = [Н + ][ОН - ] = =
81 Диссоциация воды. рН Из постоянства произведения [Н + ]и [ОН - ] следует, что при увеличении концентрации одного из ионов воды соответственно уменьшается концентрация другого иона. Это позволяет вычислять концентрацию Н + -ионов, если известна концентрация гидроксид-ионов ОН -, и наоборот. Если в водном растворе [Н + ]= моль/л, то [ОН - ] определяется так:
82 Диссоциация воды. рН Концентрацию водородных ионов принято выражать через водородный показатель и обозначать символом рН. Водородным показателем рН называется отрицательный десятичный логарифм концентрации водородных ионов: рН = -lg[H + ] где [Н + ] концентрация ионов водорода, моль/л.
83 Диссоциация воды. рН С помощью рН реакция растворов характеризуется так: нейтральная рН =7, кислая рН 7. Чем меньше рН, тем больше концентрация ионов Н + т. е. выше кислотность среды; и наоборот, чем больше рН, тем меньше концентрация ионов Н +, т. е. выше щелочность среды.
84 Диссоциация воды. рН Существуют различные методы измерения рН. Качественно реакцию среды и рН водных растворов определяют с помощью индикаторов. Существуют различные методы измерения рН. Качественно реакцию среды и рН водных растворов определяют с помощью индикаторов. Индикаторами называются вещества, которые обратимо изменяют свой цвет в зависимости от среды раствора, т. е. рН раствора. На практике применяют индикаторы лакмус, метиловый оранжевый (метилоранж) и фенолфталеин.
85 Реакции обмена в водных растворах электролитов Многие химические реакции протекают в водных растворах. Если в этих реакциях участвуют электролиты, то следует учитывать, что они находятся в водном растворе в диссоциированном состоянии, т. е. или только в виде ионов (сильные электролиты) и частично в виде молекул (слабые электролиты).
86 Реакции обмена в водных растворах электролитов Реакции между водными растворами электролитов это реакции, в которых участвуют ионы. Поэтому такие реакции называются ионными реакциями. Эти реакции возможны только в том случае, если между ионами происходит химическое взаимодействие.
87 Реакции обмена в водных растворах электролитов Ионы одного электролита связываются с ионами другого электролита с образованием: а)нерастворимого вещества; б)газообразного вещества; в)малодиссоциирующего вещества (слабый электролит). г)комплексного соединения.
88 Ионные реакции и уравнения При составлении ионных уравнений реакций следует руководствоваться тем, что вещества малодиссоциированные, малорастворимые (выпадающие в осадок) и газообразные изображаются в молекулярной форме.
89 Ионные реакции и уравнения Сильные растворимые электролиты, как полностью диссоциированные, пишутся в виде ионов. Например: AgNO 3 + HCl = AgCl + HNO 3 Ag + + NО H + + Cl - = AgCl + H + + NO 3 - Ag + + Cl - = AgCl Na 2 CO 3 +H 2 SO 4 =Na 2 SO 4 +CO 2+H 2 O 2Na + +CO H + +SO 4 2- =2Na + +SO CO 2+H 2 O CO H + = CO 2+H 2 O
90 Термины и определения Термины и определения Гидратация- взаимодействие веществ с водой, характеризующееся тем, что молекула воды присоединяется к исходной частице полностью. Гидраты- соединения, образовавшиеся в процессе присоединения воды к молекулам, атомам или ионам. Диполь-дипольное взаимодействие- взаимодействие между противоположно заряженными концами двух полярных связей или двух полярных молекул.
91 Термины и определения Диссоциация электролитическая(ионизация)- распад электролитов растворах или расплавах на составляющие их ионы. Ионизация-процесс образования ионов из нейтральных частиц атомов, радикалов, молекул. Ионы- электрически заряженные атомы ( простые атомы) или группы атомов(комплексные или многоатомные ионы).
92 Термины и определения Сольватация - взаимодействие частиц (молекул и ионов). Электроды- твердые фазы, характеризующиеся электрической проводимостью и находящиеся в контакте с электролитом. Электролит- вещество, водный раствор или расплав которого проводит электрический ток.
93 Литература 1. Л.М. Пустовалова, И.Е. Никанорова. Общая химия – Ростов-на-Дону: Феникс, 2005 г. 2. Ершов, В. А. Общая химия. Биофизическая химия: учеб. для вузов-3-е изд.-М.: высш. шк., Бабков А.В. Химия: учебник для студ. сред.мед. учеб. заведений.-М.: издательский центр «Академия», 2003 г.
94 Литература 4. Барковский Е.В. Аналитическая химия: учеб. пособие- Мн.: высш. шк., 2004 г. 5. Глинка Н.Л. Общая химия. Учебное пособие.-Интеграл-пресс г. 6. Хаускофт К., Констебл Э. Современный курс общей химии. В 2-х т. пер. с англ. М: Мир, 2002 г. 7. Слесарев В.И. Химия: Основы химии живого: Учебник для вузов. – 3- е изд., испр. – СПб: Химиздат, 2005.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.