Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемОльга Финкельштейн
4 Сf(x)=(3-2x)f'(1)=? Яf(x)=5/(3x+2)f' (-1/3)=? Юf(x)=12/(3x+1)f' (1)=? Фf(x)=4(3-2x²)f' (-1)=? Кf(x)=2ctg(2x)f' (-π/4)=? Иf(x)=4/(2-cos3x)f' (- π /6)=? Лf(x)= tg xf' (π /6)=? 84/3-9/4-43-7,5
9 Уравнение касательной к графику функции У= f(a) + f´(a)(x – a)
12 А. КАСАТЕЛЬНАЯ, ПРОВЕДЕННАЯ К ГРАФИКУ ФУНКЦИИ У=Х³-Х В ТОЧКЕ С АБСЦИССОЙ Х=0, ПАРАЛЛЕЛЬНА ПРЯМОЙ: 1) У=7-Х 2) У=Х-7 3) У=2Х-7 4) У=3*Х+7 А. ДЛЯ ФУНКЦИИ У=4Х-Х² КАСАТЕЛЬНАЯ, ПАРАЛЛЕЛЬНАЯ ОСИ АБСЦИСС, ПРОВЕДЕНА ЧЕРЕЗ ТОЧКУ КАСАНИЯ: 1) (0;0) 2) (4;0) 3) (2;4) 4) (-1;-5) А. УРАВНЕНИЕ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ f(x)= 2 х²-3 х-1, ПРОВЕДЕННОЙ В ТОЧКЕ С АБСЦИССОЙ Х 0 =1, ИМЕЕТ ВИД: 1)У=Х-3 2) У=Х-1 3) У=-2Х+3 4) 6У=-11Х-1 А. УРАВНЕНИЕ КАСАТЕЛЬНОЙ, ПРОВЕДЕННОЙ К ГРАФИКУ ФУНКЦИИ f (х)= 3 х²-2 х+5 В ТОЧКЕ А(2;13): 1) У=76Х-502 2) У=10Х-7 3) У=10Х+33 4) У=76Х-139 А. НАЙТИ ТАНГЕНС УГЛА НАКЛОНА КАСАТЕЛЬНОЙ, ПРОВЕДЕННОЙ К ГРАФИКУ ФУНКЦИИ У= 3Х²-5Х В ТОЧКЕ С АБСЦИССОЙ Х 0 =2. 1) 0,83 2) 2 3)3 4) 7
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.