Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемАнфиса Дворцова
1 /МЕТОД МАЖОРАНТ/ ПОДГОТОВКА К ЕГЭ
2 Применим для задач в которых множества значений левой и правой частей уравнения или неравенства имеют единственную общую точку, являющуюся наибольшим значением для одной части и наименьшим для другой. Эту ситуацию хорошо иллюстрирует график. Как начинать решать такие задачи ? МЕТОД МАЖОРАНТ Привести уравнение или неравенство к виду Сделать оценку обеих частей. Пусть существует такое число М, из области определения такое что Решить систему уравнений:
3 Ответ:. удовлетворяет второму уравнению. Пример 1. Решите уравнение Решение. Оценим обе части уравнения. При всех значениях х верны неравенства: Следовательно, данное уравнение равносильно системе: Полученная система не имеет решений, так как не Графическая иллюстрация
4 Пример 2. Решить уравнение Решение: Решение: Оценим обе части уравнения. При всех значениях х верны неравенства Следовательно, данное уравнение равносильно системе: При х = 0 второе уравнение обращается в тождество, значит х = 0 корень уравнения. Ответ: х = 0. Графическая иллюстрация
5 Пример 3. Решить неравенство Пусть тогда неравенство примет вид Поскольку и неравенство выполняется тогда и только тогда, когда Обратная замена: х + 1 = 0 Ответ: - 1. Решение. Графическая иллюстрация
6 Пример 4. Решить уравнение Так как-то левая часть уравнения Для правой части (в силу неравенства для суммы двух взаимно обратных чисел) выполнено Поэтому уравнение имеет решения, если и только если одновременно выполнены два условия Решая эту систему, получаем принимает значение от 0,5 до 2. Ответ: Решение. Оценим обе части уравнения. Графическая иллюстрация
7 Пример 5. Решить уравнение Поскольку равенство выполняется тогда и только тогда, когда Решением первого уравнения системы являются значения При этих х найдем Следовательно, решение системы. Ответ: Решение. Оценим обе части уравнения.
8 Пример 6. Решить уравнение Так как и то в том случае, когда оба слагаемых одновременно равны 1. Следовательно, данное уравнение равносильно системе уравнений решая которые имеем Ответ:. Решение.
9 Пример 7. Решить уравнение Решение. Очевидно, что почленное эти неравенства, получаем: Следовательно, левая часть равна правой, лишь при условии: Значит, данное уравнение равносильно системе уравнений: Решая систему уравнений, получаем корни:. Заметим, что перемножив Ответ:
10 Проверим справедливость первого равенства, подставив эти корни. При Пример 8. Решите уравнение Решение. Для решения уравнения оценим его части: Поэтому равенство возможно только при условии Сначала решим второе уравнение: Корни этого уравнения и получаем: (верное равенство). Итак, данное уравнение имеет единственный корень х = 0. Ответ: 0. При х = -1 имеем: ( не верное равенство).
11 Пример 9. Найти все значения параметра а, при каждом из которых уравнение имеет решения. Найдите эти решения. При всех значениях х выражение При всех значения х выражения Поэтому Следовательно, левая часть уравнения не меньше 4, а правая часть – не больше 4. Получаем систему: Ответ: при Решение. Перепишем уравнение в виде
12 1. Если в уравнении левая часть возрастающая (или убывающая) функция, а правая константа, то уравнение имеет не более одного корня. 2. Если в уравнении левая часть возрастающая (или убывающая) функция, а правая часть убывающая (возрастающая) функция, то данное уравнение имеет не более одного корня. х у 0 х у 0
13 Пример 10. Решить уравнение Решение: Данное уравнение может быть решено с помощью введения новых переменных и перехода к системе уравнений. Но здесь можно обойтись без указанных непростых преобразований. Заметим, что х = 1, является корнем данного уравнения. Левая часть уравнения представляет собой сумму двух возрастающих функций и, следовательно, сама является возрастающей функцией, принимающей каждое своё значение ровно один раз. Поэтому других корней данное уравнение не имеет. Ответ: 1
14 Пример 11. Доказать, что уравнение не имеет решений: Арифметический корень не может быть отрицательным числом, поэтому уравнение решений не имеет. Левая часть исходного уравнения определена при, при каждом таком значении х Следовательно, их сумма всегда больше нуля. Находим ОДЗ уравнения: Не существует такого значения х, при котором оба выражения имеют смысл. Поэтому уравнение решений не имеет. ОДЗ уравнения: их сумма не меньше 3. Заметим,
15 ИСПОЛЬЗОВАНИЕ ОБЛАСТИ ОПРЕДЕЛЕНИЯ ФУНКЦИИ ИСПОЛЬЗОВАНИЕ ОБЛАСТИ ОПРЕДЕЛЕНИЯ ФУНКЦИИ Итак, единственной точкой, в которой определены эти радикалы, является x = 1. Легко проверить, что это число – корень уравнения. Решить уравнение: Решение. Первый радикал определен при Второй радикал определен при любых значениях х. Выражение под третьим корнем неотрицательно при Ответ: 1.
16 Решить уравнение Решение. В этом примере, как и в предыдущем, попытки найти корни, возводя обе части уравнения в квадрат, обречены на неудачу. Выпишем, как в предыдущем примере, условие существования функции, стоящей в левой части: Решение этого неравенства также представляется проблематичным. Проверим неотрицательность правой части: Последнее неравенство решений не имеет. Но тогда и исходное уравнение не имеет решений, так как левая часть его – неотрицательная функция! Ответ:
17 ИСПОЛЬЗОВАНИЕ СВОЙСТВА ОГРАНИЧЕННОСТИ ФУНКЦИИ ДЛЯ НАХОЖДЕНИЯ ЕЁ НАИБОЛЬШЕГО ЗНАЧЕНИЯ ИСПОЛЬЗОВАНИЕ СВОЙСТВА ОГРАНИЧЕННОСТИ ФУНКЦИИ ДЛЯ НАХОЖДЕНИЯ ЕЁ НАИБОЛЬШЕГО ЗНАЧЕНИЯ Данная функция принимает наибольшее значение тогда и только тогда, когда наибольшее значение принимает функция, стоящая в показателе степени: Укажите наибольшее целое значение функции Преобразуем её: Так как то наибольшее значение функции равно 4. Следовательно, наибольшее значение исходной функции равно Ответ: Решение.
18 Пример. Может ли при каком-нибудь значении параметра а, уравнение иметь три корня? ИСПОЛЬЗОВАНИЕ ЧЕТНОСТИ ФУНКЦИИ Решение. Легко заметить, что при замене х на –х данное уравнение не изменится, значит, если является корнем данного уравнения, от нуля, входят в множество решения уравнения «парами». то число -также является его корнем, т.е. корни, отличные Так как число 0 не является корнем уравнения, то уравнение имеет четное число корней. Ответ: не может. Графическая иллюстрация
19 а = 1 а = 2 а = 3 а = -3 а = -2 а = -1 у = 1
20 Может ли при каком-нибудь значении параметра а, уравнение Так как при замене х на – х данное уравнение не изменится, то множество его корней вместе с каждым корнем содержит противоположный корень. Следовательно, уравнение имеет четное число корней, отличных от нуля. Проверка показывает, что 0 – корень, значит, данное уравнение имеет нечетное число корней. иметь нечетное число корней? Решение. Ответ: да. Графическая иллюстрация ИСПОЛЬЗОВАНИЕ ЧЕТНОСТИ ФУНКЦИИ
21 у х а = 2 а = 1 а = -1 а = 3 а = -3 а = -2
22 Литература Для создания шаблона презентации использовалась картинка 05/ _2. jpg 05/ _2. jpg 1.Математика. ЕГЭ. Контрольные измерительные материалы. Методические указания при подготовке. Тестовые задания: Учебно – методическое пособие Л.Д. Лаппо, А.В. Морозов, М.А. Попов. – М.: издательство «Экзамен», 2004, 2006, Математика. ЕГЭ. Контрольные измерительные материалы. Варианты тестов. Министерство образования РФ. – М.: Центр тестирования Минобразования России, Денищева Л.О. и др. 3. Математика абитуриенту. Автор: Ткачук В. В. Издательство: Год: МЦНМО. Страниц: 976
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.