Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемЛев Ширяй
2 Определение: выпуклый многоугольник называется правильным, если у него все стороны и все углы равны.. Квадрат Правильный треугольник Правильный восьмиугольник Правильный шестиугольник
3 История Построение правильного многоугольника с "n " сторонами оставалось проблемой для математиков вплоть до XIX века. История Построение правильного многоугольника с "n " сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на "n " равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник. Такое построение идентично разделению окружности на "n " равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.
4 Правильные многоугольники привлекали внимание древнегреческих учёных ещё задолго да Архимеда. Пифагорейцы, выбравшие эмблемой своего союза пентаграмму - пятиконечную звезду, придавали очень большое значение задаче о делении окружности на равные части, то есть о построении правильного вписанного многоугольника.
6 Альбрехт Дюрер ( гг), ставший олицетворением Возрождения в Германии приводит теоретически точный способ построения правильного пятиугольника, заимствованный из великого сочинения Птолемея "Альмагест". Интерес Дюрера к построению правильных многоугольников отражает использование их в Средние века в арабских и готических орнаментах, а после изобретения огнестрельного оружия - в планировке крепостей Дюрер пишет: «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».
7 Приближенное построение правильного пятиугольника представляет собой интерес. А.Дюрером оно проводится при условии неизменности раствора циркуля, что повышает точность построения.
8 Способ построения описан Дюрером так: "Однако пятиугольник, построенный неизменным раствором циркуля, делай так. Проведи две окружности так, чтобы каждая из них проходила через центр другой. Два центра А и В соедини прямой линией. Это и будет стороной пятиугольника. Точки пересечения окружностей обозначь сверху С, снизу D и проведи прямую линию CD. После этого возьми циркуль с неизменным раствором и, установив одну его ножку в точку D, другой проведи через оба центра А и В дугу до пересечения её с обеими окружностями. Точки пересечения обозначь через E и F, а точку пересечения с прямой CD обозначь буквой G. Теперь проведи прямую линию через Е и G до пересечения с линией окружности. Эту точку обозначь Н. Затем проведи другую линию через F и G до пересечения с линией окружности и поставь здесь J. Соединив J,A и H,B прямыми, получим три стороны пятиугольника. Дав возможность двум сторонам такой длины достигнуть совпадения в точке K из точек J и H, получим некоторый пятиугольник."
9 Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2 "m " сторонами (при целом "m " > 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2 "m " сторонами (при целом "m " > 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2 "m " сторонами (при целом "m " > 1), имея уже построенный многоугольник с числом сторон 2 "m - 1 " : пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее">
10 Платон ( гг. до н.э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.
11 Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.
15 Леонардо да Винчи также много писал о многоугольниках, но именно Дюрер, а не Леонардо, передал средневековые способы построения потомкам. Дюрер, конечно, был знаком с " Началами" Евклида, но не привел в своем "Руководстве к измерению" (о построениях при помощи циркуля и линейки) предложенный Евклидом теоретически точный способ построения правильного пятиугольника.
16 Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, к которым, кроме 3 и 5, относятся 17, 257 и 65537, то его можно построить при помощи циркуля и линейки. Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, к которым, кроме 3 и 5, относятся 17, 257 и 65537, то его можно построить при помощи циркуля и линейки.
17 Вершинами октаэдра являются центры граней куба, а если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра. Полученные многоугольники оказываются действительно правильные, так как их грани – правильные треугольники. Это следует из того, что при повороте куба ребро многогранника можно перевести в любое другое.
18 ПЛАТОНОВЫ ТЕЛА Гексаэдр Тетраэдр Октаэдр Икосаэдр Додекаэдр Название правильных многогранников определяет число их граней: тетраэдр (4 грани), кексаэдр (6 граней), октаэдр (8 грандей), додекаэдр (12 граней) и икосаэдр (20 граней). С греческого "кедрон" переводится как грань, "тетра", "кекса" и т. д. – указанные числа граней. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба - квадраты, додекаэдра – правильные пятиугольники.
19 ПРАВИЛЬНЫЕ МНОГОГРАННИКИ В ФИЛОСОФСКОЙ КАРТИНЕ МИРА ПЛАТОНА Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у пламени октаэдр – олицетворял воздух куб – самая устойчивая из фигур – олицетворял землю икосаэдр – как самый обтекаемый – олицетворял воду додекаэдр символизировал весь мир
20 Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни. Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса. Раковина наутилуса закручена подобно золотой спирали. Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета. Возбуждение струны в точке, делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации. На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения. Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев». Пропорция обнаружена в картине Сандро Боттичелли «Рождение Венеры» Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича. Иоанну Кеплеру, жившему пять веков назад, принадлежит высказывание: "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении"
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.