Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемpifagorchiki.ucoz.ru
1 ПОДОБНЫЕ ТРЕУГОЛЬНИКИ © Т.И.Каверина, 2009
2 Пропорциональные отрезки Отношением отрезков AB и CD называется отношение их длин, т.е. Отрезки AB и CD пропорциональны отрезкам A 1 B 1 и C 1 D 1, если AB CD
3 Определение подобных треугольников Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Число k, равное отношению сходственных сторон треугольников, называется коэффициентом подобия A B C A1A1 B1B1 C1C1
4 Отношение площадей подобных треугольников Отношением площадей двух подобных треугольников равно квадрату коэффициента подобия Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника. A B C A1A1 B1B1 C1C1 B A C D
5 Признаки подобия треугольников I признак подобия треугольников Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны Дано: ABC, A 1 B 1 C 1, A = A 1, B = B 1 Доказать: ABC A 1 B 1 C 1 A B C A1A1 B1B1 C1C1
6 Признаки подобия треугольников II признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны Дано: ABC, A 1 B 1 C 1, A = A 1 Доказать: ABC A 1 B 1 C 1 A B C A1A1 B1B1 C1C1
7 Признаки подобия треугольников III признак подобия треугольников Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны Дано: ABC, A 1 B 1 C 1, Доказать: ABC A 1 B 1 C 1 A B C A1A1 B1B1 C1C1
8 Применение подобия к доказательству теорем Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух сторон Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны Дано: ABC, MN – средняя линия Доказать: MN AC, MN = AC A M B N C
9 Применение подобия к решению задач Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1,считая от вершины A B C B1B1 A1A1 C1C1 O
10 Применение подобия к решению задач Высота прямоугольного треугольника, проведенная из вершины прямого угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику. ABC ACD, ABC CBD ACD CBD A C BD
11 Применение подобия к доказательству теорем 1.Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой A C BD
12 Применение подобия к доказательству теорем 2. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой, проведенной из вершины прямого угла. A C BD
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.