Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемФаина Белокопытова
2 Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 0.
3 Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, плоскости стены и потолка. плоскости стены и потолка.
4 Признак перпендикулярности двух плоскостей. Признак перпендикулярности двух плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.АВСD
5 Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой их этих плоскостей. a
6 Прямоугольный параллелепипед Прямоугольный параллелепипед Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
7 Прямоугольный параллелепипед Две грани параллелепипеда параллельны.
8 1 0. В прямоугольном параллелепипеде все шесть 1 0. В прямоугольном параллелепипеде все шесть граней – прямоугольники. граней – прямоугольники Все двугранные углы прямоугольного 2 0. Все двугранные углы прямоугольного параллелепипеда – прямые. параллелепипеда – прямые. Длины трех ребер, имеющих общую вершину, называются измерениями прямоугольного параллелепипеда.
9 Планиметрия Стереометрия В прямоугольнике квадрат диагонали равен сумме квадратов двух его измерений. А В С D d a b d 2 = a 2 + b 2 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. d 2 = a 2 + b 2 + с 2 a b с d
10 d C а b с B A D B1B1 C1C1 D1D1 A1A1 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Следствие. Диагонали прямоугольного параллелепипеда равны. d 2 = a 2 + b 2 + с 2
11 а Ребро куба равно а. Найдите диагональ куба D А В С А1А1 D1D1 С1С1 В1В1 d 2 = a 2 + b 2 + с 2 d = 3a 2 d 2 = 3a 2 d = a 3 а а а
12 Найдите расстояние от вершины куба до плоскости любой грани, в которой не лежит эта вершина, если: а) диагональ грани куба равна m. б) диагональ куба равна d D А В С D1D1 С1С1 m Н А Расстояние от точки до плоскости – длина перпендикуляра Подсказка В1В1 А1А1
13 Дан куб. Найдите следующие двугранные углы: a) АВВ 1 С; б) АDD 1 B; в) А 1 ВВ 1 К, где K – середина ребра А 1 D D А В С А1А1 D1D1 С1С1 В1В1 K
14 Дан куб АВСDА 1 В 1 С 1 D 1. Докажите, что плоскости АВС 1 и А 1 В 1 D перпендикулярны D А В С А1А1 D1D1 С1С1 В1В1
15 Найдите тангенс угла между диагональю куба и плоскостью одной из его граней D А В С А1А1 D1D1 С1С1 В1В1 Подсказка Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость. П-Р Н-я П-я Н А М П-Р Н-я П-я
16 D АВ С А1А1 D1D1 С1С1 В1В1 Подсказка Дан прямоугольный параллелепипед АВСDА 1 В 1 С 1 D 1. Найдите расстояние между: а) прямой А 1 С 1 и и плоскостью АВС; a a IIa Расстояние от произвольной точки расстоянием прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью между прямой и параллельной ей плоскостью n d m
17 D АВ С А1А1 D1D1 С1С1 В1В1 Подсказка Дан прямоугольный параллелепипед АВСDА 1 В 1 С 1 D 1 Найдите расстояние между: б) плоскостями АВВ 1 и DCC 1 ; n d m II Расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости называется расстоянием между параллельными плоскостями.
18 D АВ С А1А1 D1D1 С1С1 Дан прямоугольный параллелепипед АВСDА 1 В 1 С 1 D 1. Найдите расстояние между: в) прямой DD 1 и плоскостью АСС 1. n d m Подсказка a a IIa Расстояние от произвольной точки расстоянием прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью между прямой и параллельной ей плоскостью В1В1
19 а Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и ребро куба; D А В С D1D1 С1С1 а В1В1 А1А1 a a II расстоянием между скрещивающимися прямыми. Расстояние межу одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. a b a b Подсказка
20 а Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими: б) диагональ куба и диагональ грани куба D А В С D1D1 С1С1 а В1В1 А1А1 a a II расстоянием между скрещивающимися прямыми. Расстояние межу одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. a b a b Подсказка
21 D В D1D1 С1С1 Изобразите куб АВСDА 1 В 1 С 1 D 1 и постройте его сечение плоскостью, проходящей через: а) ребро АА 1 и перпендикулярной к плоскости ВВ 1 D 1 ; А А1А1 С В1В1
22 Изобразите куб АВСDА 1 В 1 С 1 D 1 и постройте его сечение плоскостью, проходящей через: б) ребро АВ и перпендикулярной к плоскости СDA 1. D В D1D1 С1С1 А А1А1 В1В1 С
23 D А В С А1А1 D1D1 С1С1 В1В1 1. Найдите угол А 1 ВС 1 2. Доказать, что MN II А 1 С 1, где M и N – середины ребер куба. N M
24 Найдите площадь сечения, проходящего через точки А, В и С 1 D В D1D1 С1С1 А А1А1 В1В1 С 7 8 6
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.