Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемАлексей Соломин
1 Гипотеза Пуанкаре и её доказательство
2 Формы пространства Многомерная музыка сфер Проверка гипотез
3 Формы пространства В 1904 г. Анри Пуанкаре предположил, что любой трехмерный объект, обладающий определенными свойствами трехмерной сферы, можно преобразовать в 3-сферу. На доказательство этой гипотезы ушло 99 лет. Российский математик из Санкт- Петербурга, Григорий Перельман доказал высказанную сто лет назад гипотезу Пуанкаре и завершил создание каталога форм трехмерных пространств.
4 Оглянитесь вокруг. Окружающие вас предметы, как и вы сами, представляют собой набор частиц, перемещающихся в трехмерном пространстве (3- многообразии), которое простирается во всех направлениях на многие миллиарды световых лет. Многообразия - это математические построения. Со времен Галилея и Кеплера ученые успешно описывают действительность в терминах той или иной ветви математики. Физики считают, что все на свете происходит в трехмерном пространстве и положение любой частицы можно задать тремя числами, например, широтой, долготой и высотой.
5 Раздел математики, в котором изучаются многообразия, называется топологией. Топологи прежде всего задались фундаментальными вопросами: Каков самый простой (т.е. характеризующийся наименее сложной структурой) тип 3- многообразия? Есть ли у него столь же простые собратья или же он уникален? Какие вообще бывают 3-многообразия? Ответ на первый вопрос известен давно: самым простым компактным 3-многообразием является пространство, называемое 3-сферой (Некомпактные многообразия бесконечны или имеют края. Далее рассматриваются только компактные многообразия).
6 Два других вопроса оставались открытыми на протяжении столетия. Лишь в 2002 г. на них ответил российский математик Григорий Перельман, который, судя по всему, сумел доказать гипотезу Пуанкаре.
7 Ровно сто лет назад французский математик Анри Пуанкаре предположил, что 3-сфера уникальна и никакое другое компактное 3-многообразие не обладает теми свойствами, которые делают ее столь простой. У более сложных 3- многообразий есть границы, встающие как кирпичная стена, или множественные связи между некоторыми областями, похожие на лесную тропинку, которая то разветвляется, то снова соединяется. Любой трехмерный объект со свойствами 3- сферы можно преобразовать в нее саму, поэтому для топологов он представляется просто ее копией. Доказательство Перельмана также позволяет ответить на третий вопрос и провести классификацию всех существующих 3- многообразий.
8 Вам потребуется изрядное воображение, чтобы представить себе 3-сферу (см. МНОГОМЕРНАЯ МУЗЫКА СФЕР). К счастью, у нее много общего с 2-сферой, типичный пример которой – резина круглого воздушного шарика: она двухмерна, поскольку любая точка на ней задается всего двумя координатами – широтой и долготой. Если рассмотреть достаточно маленький ее участок под мощной лупой, то он покажется кусочком плоского листа. Крошечному насекомому, ползающему по воздушному шарику, он будет казаться плоской поверхностью. Но если козявка будет достаточно долго двигаться по прямой, то в конечном счете вернется в точку отправления. Точно так же 3-сферу размером с нашу Вселенную мы бы воспринимали как «обычное» трехмерное пространство. Пролетев достаточно далеко в любом направлении, мы бы в конце концов совершили «кругосветное путешествие» по ней и оказались бы в исходной точке.
9 МНОГОМЕРНАЯ МУЗЫКА СФЕР Не так-то просто представить себе 3-сферу. Математикам, доказывающим теоремы о многомерных пространствах, не приходится воображать себе объект изучения: они обращаются с абстрактными свойствами, руководствуясь интуитивными представлениями, основанными на аналогиях с меньшим числом измерений (к таким аналогиям нужно относиться с осторожностью и не принимать их буквально). Мы тоже будем рассматривать 3-сферу, исходя из свойств объектов с меньшим числом измерений.
10 1. Начнем с рассмотрения круга и ограничивающей его окружности. Для математиков круг – это двумерный шар, а окружность – одномерная сфера. Далее, шар любой размерности – это заполненный объект, напоминающий арбуз, а сфера – это его поверхность, больше похожая на воздушный шарик. Окружность одномерна, потому что положение точки на ней можно задать одним числом.
11 2. Из двух кругов мы можем построить двумерную сферу, превратив один из них в Северное полушарие, а другой – в Южное. Осталось склеить их, и 2-сфера готова.
12 3. Представим себе муравья, ползущего с Северного полюса по большому кругу, образованному нулевым и 180-м меридианом (слева). Если мы отобразим его путь на два исходных круга (справа), то увидим, что насекомое движется по прямой линии (1) к краю северного круга (а), затем пересекает границу, попадает в соответствующую точку на южном круге и продолжает следовать по прямой линии (2 и 3). Затем муравей снова достигает края (b), переходит его и снова оказывается на северном круге, устремляясь к исходной точке – Северному полюсу (4). Заметьте, что во время кругосветного путешествия по 2-сфере направление движения сменяется на противоположное при переходе с одного круга на другой.
14 4. Теперь рассмотрим нашу 2-сферу и содержащийся в ней объем (трехмерный шар) и сделаем с ними то же самое, что с окружностью и кругом: возьмем две копии шара и склеим их границы вместе. Наглядно показать, как шары искажаются в четырех измерениях и превращаются в аналог полушарий, невозможно, да и не нужно. Достаточно знать, что соответствующие точки на поверхностях, т.е. 2-сферах, соединены между собой так же, как в случае с окружностями. Результат соединения двух шаров представляет собой 3-сферу – поверхность четырехмерного шара. (В четырех измерениях, где существуют 3-сфера и 4-шар, поверхность объекта трехмерна.) Назовем один шар северным полушарием, а другой – южным. По аналогии с кругами, полюса теперь находятся в центрах шаров.
16 5. Вообразите, что рассмотренные шары – большие пустые области пространства. Допустим, из Северного полюса отправляется космонавт на ракете. Со временем он достигает экватора (1), которым теперь является сфера, окружающая северный шар. Пересекая ее, ракета попадает в южное полушарие и движется по прямой линии через его центр – Южный полюс – к противоположной стороне экватора (2 и 3). Там снова происходит переход в северное полушарие, и путешественник возвращается в Северный полюс, т.е. в исходную точку (4). Таков сценарий кругосветного путешествия по поверхности 4-мерного шара! Рассмотренная трехмерная сфера и есть то пространство, о котором идет речь в гипотезе Пуанкаре. Возможно, наша Вселенная представляет собой именно 3-сферу. Рассуждения можно распространить на пять измерений и построить 4-сферу, но вообразить это чрезвычайно сложно. Если склеить два n-шара по окружающим их (n–1)-сферам, то получится n-сфера, ограничивающая (n+1)-шар.
18 Проверка гипотез Решающий шаг был сделан в ноябре 2002 г., когда Григорий Перельман, математик из Санкт- Петербургского отделения математического института им. Стеклова, отправил статью на сайт где физики и математики со всего мира обсуждают результаты своей научной деятельности. Топологи сразу уловили связь работы российского ученого с гипотезой Пуанкаре, хотя напрямую автор ее не упомянул. В марте 2003 г. Перельман опубликовал вторую статью и весной того же года посетил США и провел несколько семинаров в Массачусетском технологическом институте и в Университете штата Нью-Йорк в Стоуни-Брук. Несколько групп математиков в ведущих институтах тут же занялись детальным изучением представленных работ и поиском ошибок.
19 В 2000 г. Институт математики им. Клея в Кембридже, штат Массачусетс, учредил премию в размере $1 млн. за доказательство каждой из семи «Проблем тысячелетия», одной из которых считается гипотеза Пуанкаре. Прежде чем ученый сможет претендовать на приз, е го доказательство должно быть опубликовано и в течение двух лет тщательно проверено.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.