Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемГлеб Городенский
1 Взаимное расположение прямых в пространстве
2 Расположение прямых в пространстве: α α a b a b a b a || b Лежат в одной плоскости!
3 ??? A1A1 B1B1 D1D1 A B D C1C1 Дан куб АВСDA 1 B 1 C 1 D 1 1. Являются ли параллельными прямые АА 1 и DD 1 ; АА 1 и СС 1 ? Почему? АА 1 || DD 1, как противоположные стороны квадрата, лежат в одной плоскости и не пересекаются. АА 1 || DD 1 ; DD 1 || CC 1 AA 1 || CC 1 по теореме о трех параллельных прямых. 2. Являются ли АА 1 и DC параллельными? Они пересекаются? Две прямые называются скрещивающимися, если они не лежат в одной плоскости. С
4 Скрещивающиеся прямые
5 Две прямые называются скрещивающимися, если они не лежат в одной плоскости. Определение М a b a b
6 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi Наглядное представление о скрещивающихся прямых дают две дороги, одна из которых проходит по эстакаде, а другая под эстакадой.
7 a b a b
8 Найдите на рисунке параллельные прямые. Назовите параллельные прямые и плоскости. Найдите скрещивающиеся прямые.
9 Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся. Признак скрещивающихся прямых D В АВ СD А C ?
10 а || b а || b Три случая взаимного расположения двух прямых в пространстве а b а b М ab a b a b
11 Через вершину А ромба АВСD проведена прямая а, параллельная диагонали ВD, а через вершину С – прямая b, не лежащая в плоскости ромба. Докажите, что: а) а и СD пересекаются; б) а и b скрещивающиеся прямые. В b a b aА C ? abD
12 АD С В B1B1 С1С1 D1D1 А1А1 Каково взаимное положение прямых 1) AD 1 и МN; 2) AD 1 и ВС 1 ; 3) МN и DC? N M
13 А D С В B1B1 С1С1 D1D1 А1А1 Докажите, что прямые скрещивающиеся: 1)AD и C 1 D 1 ; 2) A 1 D и D 1 C; 3) AB 1 и D 1 C N M
14 А D С В B1B1 С1С1 D1D1 А1А1 Основание призмы АВСDA 1 B 1 C 1 D 1 – трапеция. Какие из следующих пар прямых являются скрещивающимися? 1) D 1 C и C 1 D; 2) C 1 D и AB 1 ; 3) C 1 D и AB; 4) AB и CD.
15 Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна. Теорема о скрещивающихся прямых D С B E A
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.