Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемДмитрий Шмаков
2 Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА
3 В С M Из точки В к плоскости проведена наклонная, равная 12 см. Угол между наклонной и ее проекцией на плоскость равен Найти расстояние от точки В до плоскости. 12 см 30 0 ?
4 М П-я Через вершину А треугольника АВС проведена прямая СМ, перпендикулярная к его плоскости. Угол С равен Найдите расстояния: 1) от точки А до прямой ВС; 2) от точки М до прямой ВС, если АС = 12 см, а АМ = А В С П-Р Н-я TTП СВ АF П-я СВ MF Н-я АF и МF – искомые расстояния F 30 0
5 Планиметрия Стереометрия Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. Двугранный угол АВ С АВ С
6 Двугранным углом называется фигура, образованная прямой a и двумя полуплоскостями с общей границей a, не принадлежащими одной плоскости. Две полуплоскости – грани двугранного угла a – Прямая a – ребро двугранного угла a
7 O Угол РDEK Двугранный угол АВNМ, где ВN – ребро, точки А и М лежат в гранях двугранного угла А В N Р M К D E Угол SFX – линейный угол двугранного углаSXF
8 Угол РОК – линейный угол двугранного угла РDEК. D EРК O Градусной мерой двугранного угла называется градусная мера его линейного угла. Алгоритм построения линейного угла.
9 Все линейные углы двугранного угла равны друг другу. А ВO А1А1А1А1 В1В1В1В1O 1 Лучи ОА и О 1 А 1 – сонаправлены Лучи ОВ и О 1 В 1 – сонаправлены Углы АОВ и А 1 О 1 В 1 равны, как углы с сонаправленными сторонами
10 Двугранный угол может быть прямым, острым, тупым
11 Построить линейный угол двугранного угла ВАСК. Треугольник АВС – равнобедренный. А С В N П-р Н-я П-я TTП АС ВМ H-я H-я АС NМ П-я П-я Угол ВMN – линейный угол двугранного угла ВАСК К M
12 Построить линейный угол двугранного угла ВАСК. Треугольник АВС – прямоугольный. А В N П-р Н-я П-я TTП АС ВС H-я H-я АС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВАСК К С
13 Построить линейный угол двугранного угла ВАСК. Треугольник АВС – тупоугольный. А В N П-р Н-я П-я TTП АС ВS H-я H-я АС NS П-я П-я Угол ВSN – линейный угол двугранного угла ВАСК К С S
14 Построить линейный угол двугранного угла ВDСК. АВСD – прямоугольник. А В N П-р Н-я П-я TTП DС BС H-я H-я DС NС П-я П-я Угол ВСN – линейный угол двугранного угла ВDСК К С D
15 Построить линейный угол двугранного угла ВDСК. АВСD – параллелограмм, угол С острый. А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D N Н-я M
16 Построить линейный угол двугранного угла ВDСК. АВСD – параллелограмм, угол С тупой. А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D Н-я M N
17 Построить линейный угол двугранного угла ВDСК. АВСD – трапеция, угол С острый. А В П-р П-я TTП DС ВM H-я H-я DС NM П-я П-я Угол ВMN – линейный угол двугранного угла ВDСК К С D Н-я M N
18 Неперпендикулярные плоскости и пересекаются по прямой МN. В плоскости из точки А проведен перпендикуляр АВ к прямой МN и из той же точки А проведен перпендикуляр АС к плоскости. Докажите, что угол АВС – линейный угол двугранного угла АМNC M N А С В П-р Н-я П-я TTП МN АB H-я MN ВС П-я Угол АВС – линейный угол двугранного угла АМNC
19 С А В D M В тетраэдре DАВС все ребра равны, точка М – середина ребра АС. Докажите, что угол DМВ – линейный угол двугранного угла ВАСD
20 Двугранный угол равен. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла В d N А ?
21 Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна FВ А О
22 Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90 0.
23 Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты, плоскости стены и потолка. плоскости стены и потолка.
24 Признак перпендикулярности двух плоскостей. Признак перпендикулярности двух плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.АВСD
25 Следствие. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой их этих плоскостей. a
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.