Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемИнна Мамонова
2 Призма А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3 n Многогранник, составленный из двух равных многоугольников А 1 А 2 …А n и В 1 В 2 …В n, расположенных в параллельных плоскостях, и n параллелограммов, называется призмой. n-угольная призма. Многоугольники основания призмы А 1 А 2 …А n и В 1 В 2 …В n – основания призмы. боковые грани призмы Параллелограммы А 1 В 1 В 2 В 2, А 2 В 2 В 3 А 3 и т.д. боковые грани призмы
3 Призма А1А1 А2А2 АnАn B1B1 B2B2 nBnnBn B3B3 А3А3 Отрезки А 1 В 1, А 2 В 2 и т.д. - боковые ребра призмы высотой призмы Перпендикуляр, проведенный из какой- нибудь точки одного основания к плоскости другого основания, называется высотой призмы.
4 прямой, наклонной Если боковые ребра перпендикулярны к основаниям, то призма называется прямой, в противном случае наклонной. Высота прямой призмы равна ее боковому ребру.
5 правильной, Прямая призма называется правильной, если ее основания - правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники.
6 Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью боковой поверхности призмы – сумма площадей ее боковых граней. hh P oc н
7 Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых ребрах призмы HВ СD А1А1 D1D1 С1С1 В1В1 А F 9 88
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.