Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемАлина Калечицкая
1 Золотое сечение Учитель математики МОУ СОШ 4 с углубленным изучением отдельных предметов Прийма Т.Б. в математике
2 Цели проекта: Познание математических закономерностей в мире, определение значения математики в мировой культуре и дополнение системы знаний представлениями о «Золотом Сечении» как гармонии окружающего мира. Познание математических закономерностей в мире, определение значения математики в мировой культуре и дополнение системы знаний представлениями о «Золотом Сечении» как гармонии окружающего мира. Формирование навыков самостоятельной исследовательской деятельности. Формирование навыков самостоятельной исследовательской деятельности. Формирование навыков решения ключевой проблемы в процессе сотрудничества и создания продукта, полезного обществу. Формирование навыков решения ключевой проблемы в процессе сотрудничества и создания продукта, полезного обществу. Обучение работе с информацией и медиа средствами для расширения кругозора и развития творческих способностей. Обучение работе с информацией и медиа средствами для расширения кругозора и развития творческих способностей.
3 Проблема: Существование гармонии в окружающем нас мире. Существование гармонии в окружающем нас мире. Применение знаний о золотом сечении в исследовании объектов города Батайска. Применение знаний о золотом сечении в исследовании объектов города Батайска.
4 Задачи проекта: Подобрать литературу по теме. Подобрать литературу по теме. Провести исследования по следующим направлениям: Провести исследования по следующим направлениям: Ознакомиться с историей золотого сечения Ознакомиться с историей золотого сечения Дать формулировку понятия золотого сечения, рассмотреть алгебраический и геометрический смысл Дать формулировку понятия золотого сечения, рассмотреть алгебраический и геометрический смысл Сформулировать понятие гармонии и математической гармонии Сформулировать понятие гармонии и математической гармонии Выводы по исследуемой теме Выводы по исследуемой теме
5 История «Золотого сечения» В Древнем Египте существовала «система правил гармонии», основанная на Золотом Сечении. В Древнем Египте существовала «система правил гармонии», основанная на Золотом Сечении. Красота и гармония стали важнейшими категориями познания. В Древней Греции Золотое Сечение было своеобразным каноном культуры, который пронизывает все сферы науки и искусства. Красота и гармония стали важнейшими категориями познания. В толковании древних греков понятие золотого сечения, и понятие гармонии идентичны. Согласно Пифагору гармония имеет численное выражение, то есть, она связана с концепцией числа. Согласно Пифагору гармония имеет численное выражение, то есть, она связана с концепцией числа. Евклид излагает теорию Платоновых тел, которая является существенным разделом геометрической теории Золотого Сечения. Евклид излагает теорию Платоновых тел, которая является существенным разделом геометрической теории Золотого Сечения. Теория гармонии Древних
6 Два главных Платоновых тела, додекаэдр и икосаэдр, основаны на Золотом Сечении. Икосаэдр и додекаэдр
7 Ряд Фибоначчи С историей золотого сечения связано имя итальянского математика Леонардо Фибоначчи. Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Каждый член последовательности, начиная с третьего, равен сумме двух предыдущих, а отношение смежных чисел ряда приближается к отношению золотого деления. Все исследователи золотого деления в растительном и в животном мире, искусстве, неизменно приходили к ряду Фибоначчи как арифметическому выражению закона золотого деления.
8 «Золотая Пропорция» - главный эстетический принцип эпохи Средневековья Эпоха Возрождения ассоциируется с именами таких «титанов», как Леонардо да Винчи, Микеланджело, Рафаэль, Николай Коперник, Альберт Дюрер, Лука Пачоли. Имеется много авторитетных свидетельств о том, что именно Леонардо да Винчи( ) был одним из первых, кто ввел сам термин «Золотое Сечение». Доказано, что во многих своих произведениях Леонардо да Винчи использовал пропорции золотого сечения, в частности, в своей всемирно известной фреске «Тайная вечеря» и непревзойденной «Джоконде.
9 «Витрувийский человек» Леонардо да Винчи Разрабатывая правила изображения человеческой фигуры, Леонардо да Винчи пытался на основе литературных сведений древности восстановить так называемый «квадрат древних». Он выполнил рисунок, в котором показано, что размах вытянутых в сторону рук человека примерно равен его росту, вследствие чего фигура человека вписывается в квадрат и в круг. При исследовании рисунка можно заметить, что комбинация рук и ног в действительности составляет четыре различных позы. Рисунок и текст иногда называют каноническими пропорциями.
10 Вклад Кеплера в теорию Золотого Сечения Гениальный астроном Иоганн Кеплер ( ) был последовательным приверженцем Золотого Сечения, Платоновых тел и Пифагорейской доктрины о числовой гармонии Мироздания. Гениальный астроном Иоганн Кеплер ( ) был последовательным приверженцем Золотого Сечения, Платоновых тел и Пифагорейской доктрины о числовой гармонии Мироздания. Считается, что именно Кеплер обратил внимание на ботаническую закономерность филлотаксиса и установил связь между числами Фибоначчи и золотой пропорцией, доказав, что последовательность отношений соседних чисел Фибоначчи: Считается, что именно Кеплер обратил внимание на ботаническую закономерность филлотаксиса и установил связь между числами Фибоначчи и золотой пропорцией, доказав, что последовательность отношений соседних чисел Фибоначчи: 1/1; 2/1; 3/2; 5/3 ;8/5; 13/8;…в пределе стремится к золотой пропорции 1/1; 2/1; 3/2; 5/3 ;8/5; 13/8;…в пределе стремится к золотой пропорции
11 Математическое понимание гармонии «Гармония – соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия» - «Гармония – соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия» - Большая Советская Энциклопедия Математическая гармония - это равенство или соразмерность частей с друг другом и части с целым. Математическая гармония - это равенство или соразмерность частей с друг другом и части с целым. Понятие математической гармонии тесно связано с понятиями пропорции и симметрии. Понятие математической гармонии тесно связано с понятиями пропорции и симметрии.
12 Понятие «Золотое сечение» a : b = b : c или с : b = b : а Золотое сечение - деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.
13 Эта пропорция равна: Золотое сечение в процентах
14 Число является положительным корнем квадратного уравнения: x 2 = x + 1 подставим корень вместо x и разделим на : Если продолжить такую подстановку бесконечное число раз, то получим цепную дробь: Аналогично, если взять корень квадратный из правой и левой частей тождества (1) то получим представление золотой пропорции в «радикалах»: (2) (3) (1) (4) Эти формулы (3) и (4) доставляют «эстетическое наслаждение» и вызывают неосознанное чувство ритма и гармонии… «Золотое сечение» - гармония математики «Золотое сечение» - гармония математики
15 Дано: отрезок АВ. Построить: золотое сечение отрезка АВ, т.е. точку Е так, чтобы. Построение. Построим прямоугольный треугольник, у которого один катет в два раза больше другого. Для этого восстановим в точке В перпендикуляр к прямой АВ и на нем отложим отрезок ВС=. Далее, соединим точки А и С, отложим отрезок CD=CB, и наконец AE=AD. Точка Е является искомой, она производит золотое сечение отрезка АВ. Построение. Построим прямоугольный треугольник, у которого один катет в два раза больше другого. Для этого восстановим в точке В перпендикуляр к прямой АВ и на нем отложим отрезок ВС=. Далее, соединим точки А и С, отложим отрезок CD=CB, и наконец AE=AD. Точка Е является искомой, она производит золотое сечение отрезка АВ. Деление отрезка в золотом отношении Золотое сечение в геометрии
16 А ВС Золотым называется такой равнобедренный треугольник, основание и боковая сторона которого находятся в золотом отношении: Золотой треугольник
17 Прямоугольник, стороны которого находятся в золотом отношении, т.е. отношение длины к ширине даёт число φ, называется золотым прямоугольником. Золотой прямоугольник
18 Последовательно отрезая от золотого прямоугольника квадраты и вписывая в каждый по четверти окружности, получаем золотую логарифмическую спираль. Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется спираль Архимеда. Золотая спираль
19 Пентаграмма Если в пентаграмме провести все диагонали, то в результате получим пятиугольную звезду. Точки пересечения диагоналей в пентаграмме являются точками золотого сечения диагоналей (отношение синего отрезка к зелёному, красного к синему, зелёного к фиолетовому, равны 1.618). При этом эти точки образуют новую пентаграмму FGHKL и пять правильных треугольников (ADC, ADB,EBD, AEC,EBC) Здание военного ведомства США имеет форму пентаграммы и получило название «Пентагон», что значит правильный пятиугольник.
20 Вывод Проведя исследование по данной теме мы смогли дать ответы на все вопросы которые были поставлены в начале проекта Проведя исследование по данной теме мы смогли дать ответы на все вопросы которые были поставлены в начале проекта
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.