Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемКлавдия Кречетникова
1 Равнобедренные треугольники Треугольник называется равнобедренным, если у него две стороны равны (рис. 1). Эти равные стороны называются боковыми сторонами, а третья сторона – основанием. Треугольник называется равносторонним, если у него все стороны равны (рис. 2).
2 Теорема В равнобедренном треугольнике углы при основании равны. Доказательство. Пусть ABC – равнобедренный треугольник, AC = BC, CD – биссектриса. Тогда треугольник ACD равен треугольнику BCD по первому признаку равенства треугольников (АС = ВС, СD – общая сторона, ACD = BCD). Следовательно, уголA равен углу B.
3 Упражнение 1 Нарисуйте какой-нибудь равнобедренный треугольник, основанием которого является отрезок AB, а вершина C расположена в одном из узлов сетки. Сколько таких треугольников? Ответ. 6.
4 Упражнение 2 Нарисуйте какой-нибудь равнобедренный треугольник, основанием которого является отрезок AB, а вершина C расположена в одном из узлов сетки. Сколько таких треугольников? Ответ. 6.
5 Упражнение 3 Нарисуйте какой-нибудь равнобедренный треугольник, основанием которого является отрезок AB, а вершина C расположена в одном из узлов сетки. Сколько таких треугольников? Ответ. 6.
6 Упражнение 4 Нарисуйте какой-нибудь равнобедренный треугольник, боковой стороной которого является отрезок AС, а вершина B расположена в одном из узлов сетки. Сколько таких треугольников? Ответ. 2.
7 Упражнение 5 Нарисуйте какой-нибудь равнобедренный треугольник, боковой стороной которого является отрезок AС, а вершина B расположена в одном из узлов сетки. Сколько таких треугольников? Ответ. 12.
8 Упражнение 6 На рисунке AB = BC. Докажите, что угол 1 равен углу 2. Решение: Треугольник ABC – равнобедренный, так как AB = BC. Следовательно, угол BAC равен углу BCA, как углы при основании равнобедренного треугольника. Отсюда следует, что угол 1 равен углу 2 как смежные углы соответственно равным углам.
9 Упражнение 7 Доказательство: Пусть треугольник ABC равнобедренный (AC = BC). N, M, K – середины сторон. Тогда треугольники AMN и BMK равны по первому признаку и, следовательно, NM = MK, т.е. треугольник NMK равнобедренный. Докажите, что середины сторон равнобедренного треугольника являются вершинами также равнобедренного треугольника.
10 Упражнение 8 В треугольнике АВС АВ = АС и угол 1 равен углу 2. Докажите, что угол 3 равен углу 4. Решение: Треугольники ABE и ACD равны по второму признаку равенства треугольников (AB = AC, угол BAE равен углу CAD, угол ABE равен углу ACD). Следовательно, угол AEB равен углу ADC, значит, угол 3 равен углу 4.
11 Упражнение 9 Решение: Треугольники ACD и AEB равны по второму признаку равенства треугольников (AD = AE, угол CAD равен углу BAE, угол ADC равен углу AEB). Следовательно, CD = BE и, значит, BD = CE. На рисунке AD = AE, угол CAD равен углу BAE. Докажите, что BD = CE.
12 На рисунке АВ = AD и DC = BC. Докажите, что угол ABC равен углу ADC. Решение. Проведем отрезок BD. Треугольник ABD равнобедренный (AB = AD). Следовательно, угол ABD равен углу ADB. Треугольник CBD равнобедренный (CB = CD). Следовательно, угол CBD равен углу CDB. Значит, угол ABC равен углу ADC. Упражнение 10
13 На рисунке AB = BC, CD = DE. Докажите, что угол BAC равен углу CED. Решение. Треугольник ABC – равнобедренный и, следовательно, угол BAC равен углу BCA. Треугольник CDE – равнобедренный и, следовательно, угол DCE равен углу DEC. Углы BCA и DCE равны как вертикальные. Следовательно, угол BAC равен углу DEC. Упражнение 11
14 Упражнение 12 Решение. Треугольники ADF и BED равны по первому признаку равенства треугольников (AD = BE, AF = BD, угол A равен углу B). Следовательно, DF = ED. Аналогично доказывается, что ED = FE. На сторонах правильного треугольника АВС отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками. Докажите, что треугольник DEF правильный.
15 Упражнение 13 Решение. Треугольники ADF и BED равны по первому признаку равенства треугольников (AD = BE, AF = BD, угол A равен углу B). Следовательно, DF = ED. Аналогично доказывается, что ED = FE. На продолжении сторон правильного треугольника АВС отложены равные отрезки AD, BE и CF. Докажите, что треугольник DEF правильный.
16 Упражнение 14 Ответ: 0,8 м. Периметр равнобедренного треугольника равен 2 м, а основание - 0,4 м. Найдите боковую сторону.
17 Упражнение 15 Ответ: 3,5 м. Периметр равнобедренного треугольника равен 7,5 м, а боковая сторона - 2 м. Найдите основание.
18 Упражнение 16 Ответ: а) 3,2 м; 6, 2 м; 6,2 м; Периметр равнобедренного треугольника равен 15,6 м. Найдите его стороны, если: а) основание меньше боковой стороны на 3 м; б) основание больше боковой стороны на 3 м. б) 7,2 м; 4,2 м; 4,2 м.
19 Упражнение 17 Ответ: 6 см; 16 см; 16 см. Основание и боковая сторона равнобедренного треугольника относятся как 3:8. Найдите стороны этого треугольника, если его периметр равен 38 см.
20 Упражнение 18 Используя перегибание листа клеточной бумаги, получите равносторонний треугольник ABC. Решение. Перегнем лист клеточной бумаги по некоторой прямой AD так, чтобы точка B перешла в некоторую точку C на прямой C 1 C 2. Треугольник ABC будет искомым равносторонним треугольником.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.