Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемЕлена Изединова
1 Общие сведения о системах счисления МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ Урок 2 По данной теме урок 1
2 Ключевые слова система счисления цифра алфавит позиционная система счисления основание развёрнутая форма записи числа свёрнутая форма записи числа
3 Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа. Алфавит системы счисления - совокупность цифр. Общие сведения Древнеславянская система счисления Вавилонская система счисления Египетская система счисления
4 Узловые числа обозначаются цифрами. Узловые и алгоритмические числа Алгоритмические числа получаются в результате каких- либо операций из узловых чисел =
5 Простейшая и самая древняя система - так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Унарная система счисления Узелковое письмо «кипу» Зарубки Примеры узлов «кипу» Узелки, дощечки Камушки
6 Римская система счисления 1I100C 5V500D 10X1000M 50L 40 = XL 1935 MCMXXX 28 XXVIIIV Непозиционная система счисления Система счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.
7 Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит. Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Позиционная система счисления
8 Цифры сложились в Индии около 400 г. н. э. Арабы стали пользоваться подобной нумерацией около 800 г. н. э. Примерно в 1200 г. н. э. эту нумерацию начали применять в Европе. Десятичная система счисления
9 В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1 q n–1 + a n–2 q n–2 +…+ a 0 q 0 + a –1 q –1 +…+ a –m q –m ) Здесь: А число; q основание системы счисления; a i цифры, принадлежащие алфавиту данной системы счисления; n количество целых разрядов числа; m количество дробных разрядов числа; q i «вес» i -го разряда. Такая запись числа называется развёрнутой формой записи. Основная формула
10 Aq =±(a n–1 q n–1 + a n–2 q n–2 +…+ a 0 q 0 + a –1 q –1 +…+ a –m q –m ) Примеры записи чисел в развёрнутой форме: 2012= ,125= – ,1= –1 Развёрнутая форма
11 Система счисления это знаковая система, в которой приняты определённые правила записи чисел. Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа. В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1 q n–1 + a n–2 q n–2 +…+ a 0 q 0 + a –1 q –1 +…+ a –m q –m ) Здесь: А число; q основание системы счисления; a i цифры, принадлежащие алфавиту данной системы счисления; n количество целых разрядов числа; m количество дробных разрядов числа; q i «вес» i-го разряда. Самое главное
12 Вопросы и задания 1 РТ Заполните таблицу, записав в десятичной позиционной системе счисления числа, соответствующие числам, записанным в римской систем счисления:
13 Вопросы и задания 4 РТ Запишите алфавиты следующих позиционных систем счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4 0, 1, 2
14 Вопросы и задания 5 РТ Алфавиты каких позиционных систем счисления приведены ниже? Запишите их названия: четверичная шестеричная девятичная двенадцатеричная
15 Вопросы и задания 6 РТ Запишите наименьшее основание системы счисления, в которой могут быть записаны следующие числа: Десятичная Пятеричная Восьмеричная
16 Вопросы и задания 7 РТ Запишите числа в развернутом виде:
17 Вопросы и задания 8 РТ Вычислите десятичные эквиваленты следующих чисел: = = = = = = = = = = = = = = = =
18 Вопросы и задания 11 РТ Калькулятор, работающий в троичной системе счисления, имеет пять знакомест для вывода числа на экран. С каким самым большим десятичным числом можно работать на этом калькуляторе? = = = = =
19 Вопросы и задания 13 РТ Сравните числа: 8 9 = = = = = = = = = = = > > < 33 6 = = = = >
20 Вопросы и задания 14 РТ Вычислите х, для которых верны равенства: х > 2, 12 х = 1 х х 0 = (х + 2) 10 х + 2 = 9 х = 7 x > 3, 23 х = 2 х х 0 = (2 х + 3) 10 2 х + 3 = 15 х = 6 x > 2, 101 х = 1 х х х 0 = (х 2 + 1) 10 х = 17 х = 4, х = -4 x > 6, 15 х = 1 х х 0 = (х + 5) 10 х + 5 = 9 х = Решения нет 4
21 Домашнее задание § 1.1.1, вопросы 1 – 4 с. 14, задание 22 с. 16 В тетрадях: 5 – 10 с
22 Опорный конспект Непозиционная В позиционной системе счисления с основанием q любое число может быть представлено в виде: A q =±(a n–1 * q n–1 + a n–2 * q n–2 +…+ a 0 *q 0 + a –1 * q –1 +…+ a –m * q –m ). Система счисления это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа. Алфавит - совокупность цифр системы счисления. Система счисления Двоичная Десятичная Восьмеричная Шестнадцатеричная Римская Позиционная
23 Источники информации 1. 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 – Умножение и деление двоичных чисел 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 – История развития систем счисления 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 – Перевод недесятичных чисел в десятичную систему счисления 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 - Перевод десятичных чисел в другие системы счисления 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 - Сложение и вычитание многоразрядных двоичных чисел 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 - Сложение и вычитание одноразрядных двоичных чисел 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 – Задачник 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 - Развернутая форма записи числа 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66 – Тренировочный тест 6a62-11da-8cd c9a66&interface=catalog&class=51&subject=19&rub_guid[]=a30a9550-6a62- 11da-8cd c9a66
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.