Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемГеоргий Арапов
1 Дифференциальные уравнения. Примеры задач приводимые к дифференциальным уравнениям. Дифференциальные уравнения с разделяющими переменными. 11 класс
2 Основные понятия Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные(или дифференциалы) этой функции. Если независимая переменная одна, то уравнение называется обыкновенным; если же независимых переменных две или больше, то уравнение называется дифференциальным уравнением в частных производных.
3 Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения. Обыкновенным дифференциальным уравнением первого порядка называется уравнение вида:
4 Решением дифференциального уравнения называется такая дифференцируемая функция у=φ(х), которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения.
5 Общим решением дифференциального уравнения первого порядка у / = f(x,y) в области D называется функция y=φ(x, C), обладающая следующими свойствами: 1)При любых значениях С она является решением данного уравнения,2) для любого условия (х 0, у 0 ) существует единственное значение С 0. Всякое решение y=φ(x, C 0 ),получающееся из общего решения y=φ(x, C) при конкретном значении С=С 0, называется частным решением.
6 Разделяют несколько типов (видов) обыкновенных дифференциальных уравнений: -Уравнения с разделяющимися переменными, -Однородные уравнения, -Линейные уравнения, -Уравнение в полных дифференциалах, -и т.д. Остановимся подробнее на каждом из этих типов уравнений.
7 Уравнения с разделёнными переменными. Так называются уравнения вида удовлетворяющее начальному условию f(x)dx + g(y)dy = 0, Интегрируя, получим - общий интеграл (общее решение) этого уравнения. Пример: - общее решение
8 Уравнения с разделяющимися переменными. Так называются уравнения вида Эти уравнения легко сводятся к уравнению с разделёнными переменными: Записываем уравнение в форме: затем делим на g(y) и умножаем на dx:. Это уравнение - с разделёнными переменными. Интегрируя, получим общий интеграл:
9 Алгоритм решения уравнений с разделяющимися переменными 1. Выражают производную функции через дифференциалы dx,dy. 2. Члены с одинаковыми дифференциалами переносят в одну сторону равенства и выносят дифференциал за скобку. 3. Разделяют переменные. 4. Интегрируют обе части равенства и находят общее решение. 5. Если заданы начальные условия, то находят частное решение.
10 Выразим у из последнего выражения как функцию х, получим общее решение : Пример:
11 Уравнения с однородной правой частью. Так называются уравнения со специальным видом зависимости функции f(x, y) от своих аргументов: Это уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u(x) заменой: Подставляя в уравнение y = x·u, y = u + x·u, получим (это - уравнение с разделяющимися переменными), - это общий интеграл уравнения относительно переменных x, u
12 Пример : - общее решение уравнения
13 Решение задач 1. Решить уравнение: у / =х+3 2. Найти решение у(х) дифференциального уравнения у / =cos(x), удовлетворяющее условию у(0)=1. 3. Найти уравнение линии, проходящей через точку М(1;3) и имеющей касательную, угловой коэффициент которой равен 2 х-3.
14 Решение задач 4. Скорость тела, выходящего из состояния покоя, равна 5t 2 м/с по истечении t секунд. Определите путь, который пройдет тело за 3 секунды. 5. Решить уравнение: хdx+ydy=0. 6. Составить уравнение движения тела по оси ОХ, если оно начало движение от точки М(4;0) со скоростью v =2t+3t Решить уравнение: 2ydy=3 х 2 dx.
16 Самостоятельная работа
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.