Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 12 лет назад пользователемportal.tpu.ru
1 Глава 2. Кратные криволинейные и поверхностные интегралы §1. Двойной интеграл 1. Задача, приводящая к понятию двойного интеграла
2 Цилиндрическим телом с основанием (σ) называют область в пространстве, ограниченную областью (σ), лежащей в плоскости xOy, поверхностью z = f(x,y) и цилиндрической поверхностью z = φ(x,y), направляющей которой является граница области (σ).
4 2. Определение и свойства двойного интеграла Пусть (σ) – квадрируемая (т.е. имеющая площадь) область в плоскости xOy, и в области (σ) задана функция z = f(x,y). 1.Разобьем область (σ) произвольным образом на n частей, не имеющих общих внутренних точек: (Δσ 1 ), (Δσ 2 ), …, (Δσ n ). 2.В каждой области (Δσ i ) выберем произвольную точку P i (ξ i ;η i ) и вычислим произведение f(P i ) · Δσ i, где Δσ i – площадь области (Δσ i ). Сумму назовем интегральной суммой для функции f(x,y) по области (σ) (соответствующей данному разбиению области (σ) и данному выбору точек P i ).
5 Диаметром множества G будем называть наибольшее расстояние между любыми двумя точками множества G. Пусть d i – диаметр (Δσ i ),
6 ТЕОРЕМА 1 (необходимое условие существования двойного интеграла). Если функция f(x,y) интегрируема в области (σ), то она ограничена в этой области. ТЕОРЕМА 2 (достаточные условия существования двойного интеграла). Если 1) область (σ) – квадрируемая, 2) функция f(x,y) ограничена в области (σ) и непрерывна всюду за исключением некоторого множества точек площади нуль, то f(x,y) интегрируема в области (σ).
7 СВОЙСТВА ДВОЙНОГО ИНТЕГРАЛА 3. Постоянный множитель можно выносить за знак двойного интеграла, т.е.
8 4. Двойной интеграл от алгебраической суммы двух (конечного числа) функций равен алгебраической сумме двойных интегралов от этих функций, т.е.
11 3. Вычисление двойного интеграла Назовем область (σ) правильной в направлении оси Ox (Oy), если любая прямая, проходящая через внутреннюю точку области (σ) параллельно оси Ox (Oy) пересекает границу области в двух точках, причем, каждая из пересекаемых границ задается только одним уравнением.
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.