Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемИннокентий Векшинский
1 Модели атомов. Атом водорода по теории Бора 1. Закономерности в атомных спектрах 2. Ядерная модель атома 3. Элементарная теория Бора 4. Опыт Франка и Герца
2 1. Закономерности в атомных спектрах. Изолированные атомы в виде разреженного газа или паров металлов испускают спектр, состоящий из отдельных спектральных линий (линейчатый спектр). Изучение атомных спектров послужило ключом к познанию строения атомов. Линии в спектрах расположены не беспорядочно, а сериями. Расстояние между линиями в серии закономерно уменьшается по мере перехода от длинных волн к коротким.
4 Линейчатые спектры излучения в видимой области: водород, ртуть, неон. Спектр поглощения водорода. Дискретность, квантованность спектров излучения свидетельствует о дискретности процессов, приводящих к их появлению.
5 Швейцарский физик Й. Бальмер в 1885 году установил, что длины волн серии в видимой части спектра водорода могут быть представлены формулой (формула Бальмера): 0 = const, n = 3, 4, 5,… R = 1,09·10 7 м -1 – постоянная Ридберга, n = 3, 4, 5,… В физике постоянной Ридберга называют и другую величину равную R = R ·с. R = 3,29·10 15 c -1 или
6 Дальнейшие исследования показали, что в спектре водорода имеется еще несколько серий: Серия Лаймонаn = 2, 3, 4,… Серия Пашенаn = 4, 5, 6,… Серия Брэкетаn = 5, 6, 7,… Серия Пфундаn = 6, 7, 8,…
7 Обобщенная формула Й. Бальмера где k = 1, 2, 3,…, n = k + 1, k + 2,…. или
8 Видимая область Инфракрасная обл. Ультрафиолетовая обл.
9 Модели атомов
10 1895 г. - открытие Х-лучей Рентгеном 1896 г. - открытие радиоактивности Беккерелем 1897 г. - открытие электрона (Дж.Томсон определил величину отношения q/m) Вывод: Атом имеет сложное строение и состоит из положительных (протоны) и отрицательных (электроны) частиц
11 Модель Ж. Перрена (1901)
12 Модель Х. Нагаока (1904)
13 Модель Дж.Дж Томсона (1904)
14 В 1903 году Дж. Дж. Томсон, предложил модель атома: сфера, равномерно заполненная положительным электричеством, внутри которой находятся электроны. Суммарный заряд сферы равен заряду электронов. Атом в целом нейтрален. Теория такого атома давала, что спектр должен быть сложным, но никоим образом не линейчатым, что противоречило экспериментам.
15 а – традиционный символ атома; б – боровская модель водородоподобного атома
16 В 1899 г. открыл альфа - и бета-лучи. Вместе с Ф. Содди в 1903 г. разработал теорию радиоактивного распада и установил закон радиоактивных превращений. В 1903 году доказал, что альфа-лучи состоят из положительно заряженных частиц. В 1908 г. ему была присуждена Нобелевская премия. Резерфорд Эрнест (1871–1937) английский физик, основоположник ядерной физики. Исследования посвящены атомной и ядерной физике, радиоактивности.
17 2. Ядерная модель атома (модель Резерфорда). Скорость – частиц = 10 7 м/с = 10 4 км/сек. – частица имеет положительный заряд равный +2 е. Схема опыта Резерфорда Рассеянные частицы ударялись об экран из сернистого цинка, вызывая сцинтилляции – вспышки света.
18 Большинство α-частиц рассеивалось на углы порядка 3° Отдельные α-частицы отклонялись на большие углы, до 150º (одна из нескольких тысяч) Такое отклонение возможно лишь при взаимодействии практически точечного положительного заряда – ядра атома – с близко пролетающей α-частицей.
19 Малая вероятность отклонения на большие углы свидетельствует о малых размерах ядра : 99,95% массы атома сосредоточено в ядре м м
20 Движение α-частицы происходит по гиперболе: Угол рассеяния равен углу между асимптотами гиперболы m – масса α-частицы, – ее скорость вдали от ядра; Ze – заряд ядра; b – прицельный параметр.
21 Дифференциальное сечение рассеяния – отношение числа частиц, рассеянных атомом в единицу времени в телесный угол dΩ, к интенсивности падающих частиц. Частицы с разными прицельными параметрами отклоняются на разные углы. - формула Резерфорда
22 м Радиус ядра R (10 14 ÷ )м и зависит от числа нуклонов в ядре.
25 F F
26 Однако, планетарная модель была в явном противоречии с классической электродинамикой: электрон, двигаясь по окружности, т.е. с нормальным ускорением, должен был излучать энергию, следовательно, замедлять скорость и упасть на ядро. Модель Резерфорда не могла объяснить, почему атом устойчив Планетарная модель атома
27 БОР Нильс Хендрик Давид (1885–1962) датский физик-теоретик, один из создателей современной физики. Сформулировал идею о дискретности энергетических состояний атомов, построил атомную модель, открыв условия устойчивости атомов. Создал первую квантовую модель атома, основанную на двух постулатах, которые прямо противоречили классическим представлениям и законам. 3. Элементарная теория Бора
28 1. Атом следует описывать как «пирамиду» стационарных энергетических состояний. Пребывая в одном из стационарных состояний, атом не излучает энергию. 2. При переходах между стационарными состояниями атом поглощает или излучает квант энергии. При поглощении энергии атом переходит в более энергетическое состояние.
29 ЕnЕnЕnЕn E m > E n Поглощение энергии
30 ЕnЕnЕnЕn E m > E n Излучение энергии
31 Постулаты Бора 1. Электроны движутся только по определенным (стационарным) орбитам. При этом не происходит излучения энергии. Условие для стационарных орбит: из всех орбит электрона возможны только те, для которых момент импульса электрона, равен целому кратному постоянной Планка: n = 1, 2, 3,… главное квантовое число. m e v r = nħ
32 2. Излучение или поглощение энергии в виде кванта энергии h происходит лишь при переходе электрона из одного стационарного состояния в другое. Энергия светового кванта равна разности энергий тех стационарных состояний, между которыми совершается квантовый скачок электрона: hv = E m – E n - Правило частот Бора m, n – номера состояний. ЕnЕn EmEm Поглощение энергии ЕnЕn EmEm Излучение энергии
33 Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ
34 Радиус первой орбиты водородного атома называют Боровским радиусом: При n =1, Z = 1 для водорода имеем: = 0,529·10 –10 м. Å=
35 Внутренняя энергия атома слагается из кинетической энергии электрона и потенциальной энергией взаимодействия электрона с ядром: Энергия электрона может принимать только дискретные значения, т.к. n = 1, 2, 3,… Отсюда
36 Видимая область Инфракрасная обл. Ультрафиолетовая обл.
37 При переходе электрона в атоме водорода из состояния n в состояние k излучается фотон с энергией : и частота излучения, Мы получили обобщенную формулу Бальмера, которая хорошо согласуется с экспериментом, где постоянная Ридберга
38 У спехом теории Бора явилось: вычисление постоянной Ридберга для водородоподобных систем объяснение структуры их линейчатых спектров. Бору удалось объяснить линии спектра ионизованного гелия.
39 n , нм
40 H H H H
41 Бор теоретически вычислил отношение массы протона к массе электрона m p /m e = 1847, это находится в соответствии с экспериментом. Все это было важным подтверждением основных идей, содержащихся в теории Бора. Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.г.) были сделаны важные открытия, навсегда вошедшие в сокровищницу мировой науки.
42 Однако наряду с успехами в теории Бора с самого начала обнаружились существенные недостатки. Внутренняя противоречивость теории: механическое соединение классической физики с квантовыми постулатами. Теория не могла объяснить вопрос об интенсивностях спектральных линий. Серьезной неудачей являлась абсолютная невозможность применить теорию для объяснения спектров гелия (He) (два электрона на орбите, и уже теория Бора не справляется).
43 Стало ясно, что теория Бора является лишь переходным этапом на пути создания более общей и правильной теории. Такой теорией и являлась квантовая (волновая) механика. Дальнейшее развитие квантовой механики привело к отказу от механической картины движения электрона в поле ядра.
44 4. Опыт Франка и Герца Существование дискретных энергетических уровней атома и доказательство правильности теории Бора подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц, за экспериментальные исследования дискретности энергетического уровня получили Нобелевскую премию в 1925 г.
45 В трубке, заполненной парами ртути при давлении р 1 мм рт. ст., три электрода, катод – сетка – анод. Электроны ускорялись разностью потенциалов U между катодом и сеткой. Между сеткой и анодом тормозящее поле ( 0,5В)
46 Зависимость тока через гальванометр (Г) от разности потенциалов между катодом и сеткой (U): U = 4,86 – соответствует 1-му потенциалу возбуждения
47 Такой ход кривой объясняется тем, что вследствие дискретности энергетических уровней атомы ртути могут воспринимать энергию бомбардирующих электронов только порциями: либо Е 1, Е 2, Е 3 … - энергии 1-го, 2-го и т.д. стационарных состояний. при увеличении U вплоть до 4,86В ток I возрастает монотонно, при U = 4,86В ток максимален, затем резко уменьшается и возрастает вновь. дальнейшие максимумы тока наблюдаются при U = 2·4.86 B, 3·4.86 B...
48 При U<4,86В энергия электронов меньше ΔЕ 1 ; соударения между электронами и атомами ртути носят упругий характер. При U=4,86В энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути энергию ΔЕ 1 и продолжает двигаться с меньшей скоростью; число электронов, достигающих А, резко уменьшается и ток падает атом ртути переходит в возбужденное состояние. При U, кратном 4,86 В электроны могут испытывать с атомами ртути 2, 3, … неупругих соударения, теряя при этом полностью свою энергию. анодный ток каждый раз резко уменьшается.
49 Атомы ртути, получившие при соударении с электронами энергию ΔЕ 1 и перешедшие в возбужденное состояние, спустя время ~ с должны вернуться в основное состояние, излучая, согласно второму постулату Бора фотон с частотой (правило частот): При этом длина волны светового кванта: - что соответствует ультрафиолетовому излучению. Опыт действительно обнаруживает ультрафиолетовую линию с
50 Таким образом, опыты Франка и Герца экспериментально подтвердили не только первый, но и второй постулат Бора. Эти опыты сыграли огромное значение в развитии атомной физики.
Еще похожие презентации в нашем архиве:
© 2025 MyShared Inc.
All rights reserved.