Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемТамара Дубровина
1 Логически основи в компютъра
2 1. Съждение 2. Образуване на сложни съждения 3. Логически променливи и функции ЦЕЛИ
3 Логическите основи на компютъра използват формален апарат, който се нарича математическа логика, логическа алгебра или булева алгебра.
4 Мнозина учени са дали своя принос за развитието на тази част от математиката, но сме длъжни да споменем ирландския математик Джордж Бул ( ), който полага основите на математическата логика (неслучайно се среща и терминът Булева алгебра).
5 А) Определение - Всяка мисъл или изречение, за което може да се каже дали то е вярно т.е. истина или не е вярно т.е. неистина. Примери Днес е слънчево. Аз обичам информатиката, но нямам компютър. 1. Съждение
6 Ако едно съждение е вярно, казваме че то има верностна стойност истина, а ако не е вярно, казваме че верностната му стойност е неистина (лъжа). 1. Съждение Т (true - истина(англ.)) или 1 F (false - лъжа(англ.)) или 0
7 Стойностите 1(Т) и 0(F) се наричат съждителни константи, а променливите, които приемат само такива стойности,се наричат съждителни променливи (означават се с буквите от латинската азбука). 1. Съждение
8 Б) Видове съждения Прости – Съждения, които не съдържат в себе си други съждения, се наричат прости. Пр. Иван е чернокос. Сложни – Сложни или съставни се наричат такива съждения, които се състоят от поне две прости съждения. Пр. Тони също е чернокос, но сега се е изрусил.
9 2. Образуване на сложни съждения А) Отношение И Б) Отношение ИЛИ В) Отношение НЕ
10 А) Отношение И - Вярно е когато свързаните чрез него съждения са едновременно верни - Пример 1 Стоян е отличник по информатика и няма компютър.
11 1) Стоян е отличник – истина И Стоян няма компютър – истина Следователно съждението е вярно и има верностна стойност 1.
12 2) Стоян е отличник – истина И Стоян няма компютър – неистина Следователно съждението е невярно и има верностна стойност 0.
13 3) Стоян е отличник – неистина И Стоян няма компютър – истина Следователно съждението е невярно и има верностна стойност 0.
14 4) Стоян е отличник – неистина И Стоян няма компютър – неистина Следователно съждението е невярно и има верностна стойност 0.
15 Б) Отношение ИЛИ - Вярно е когато поне едно от двете свързани чрез него съждения е вярно. - Примери 1) Ромбът не е квадрат или трапецът е четириъгълник. 2) Ромбът е квадрат или трапецът е четириъгълник. 3) Ромбът е квадрат или трапецът е правоъгълник.
16 1) Ромбът не е квадрат – истина или трапецът е четириъгълник – истина Следователно съждението е вярно и има верностна стойност 1.
17 2) Ромбът е квадрат – неистина или трапецът е четириъгълник – истина Следователно съждението е вярно и има верностна стойност 1.
18 3) Ромбът е квадрат – неистина или трапецът е правоъгълник – неистина Следователно съждението е невярно и има верностна стойност 0.
19 В) Отношение НЕ - За всяко съждение може да се образува неговото отрицание. Ако даденото съждение е истина, то неговото отрицание не е и обратното. - Примери 1) Информатиката е любимият ми предмет. 2) Математиката не е любимият ми предмет.
20 1) Информатиката е любимият ми предмет. Отрицанието: Информатиката НЕ е любимият ми предмет.
21 2) Математиката не е любимият ми предмет. Отрицанието: Математиката е любимият ми предмет.
22 3. Логически променливи и функции А) Конюнкция Б) Дизюнкция В) Инверсия Г) Импликация Д) Изключваща дизюнкция Е) Равнозначност
23 Начините по които човек може да свързва простите съждения в сложни, както и необходимостта от това да знае как да определи верностната стойност на едно сложно съждение, ако знае стойностите на съставящите го прости, водят до изучаване и класифициране на логическите функции.
24 А) Конюнкция логическо умножение,,И" - конюнкция - има два аргумента и има стойност 0, когато поне един от аргументите й има стойност 0, и 1, когато и двата аргумента са равни на 1. Означава се с ^ или с AND, например aANDb или a^b. Таблица за истинност: ABA ^ B
25 Б) Дизюнкция Логическо събиране,,ИЛИ" - дизюнкция - има два аргумента и има стойност 1, когато поне един от аргументите й има стойност 1, и 0, когато и двата аргумента са равни на 0. Означава се с v или с OR, например aORb или avb. Таблица за истинност: ABA v B
26 В) Инверсия (!, NOT, ¬ ) логическо отрицание – инверсия – има един аргумент и променя стойността му от 1 в 0 или обратно от 0 в 1. Срещат се различни варианти на означаване - !,NOT,¬. Таблица за истинност: A!A 01 10
27 Г) Импликация - импликация ( следва, ако …, то …) - има два аргумента, катопървият се нарича предпоставка, а вторият - следствие. Резултатът от имплимацията е 0, само когато предпоставката е вярна (1), а следствието е грешно (0). В останалите случаи импликацията има стойност 1. Означава се с >. Таблица за истинност: ABA > B
28 Д) Изключваща дизюнкция изключващо,,или"( изкл. дизюнкция, неравнозначност, събиране по модул 2) - има два аргумента и има стойност 0, когато аргументите й имат равни стойности, и 1, когато аргументите й са различни. Означава се с XOR. Таблица за истинност: ABA XOR B
29 Е) Равнозначност равнозначност - има два аргумента и има стойност 0, когато аргументите й имат различни стойности, и 1, когато аргументите й са равни. Означава се с <>. Таблица за истинност: ABA <> B
30 4. Закони на Де Морган А) ¬(X ^ Y) = ¬X v ¬Y Б) ¬(X v Y) = ¬X ^ ¬ Y
31 А) ¬(X ^ Y) = ¬X v ¬Y Отрицанието на конюнкцията е равно на дизюнкцията на отрицанията.
32 Б) ¬(X v Y) = ¬X ^ ¬ Y Отрицанието на дизюнкцията е равно на конюнкцията на отрицанията.
33 5. Пресмятане на съждителни изрази
34 Пресметнете всички възможни стойности на израза (p ^ ¬q ) PQ¬ Q(P ^ ¬ Q)
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.