Скачать презентацию
Идет загрузка презентации. Пожалуйста, подождите
Презентация была опубликована 9 лет назад пользователемВладислава Добровольская
1 Система оптического распознавания документа
2 Системы оптического распознавания символов При coздании электронных библиотек и архивов путем перевода книг и документов в цифровой компьютерный формат, при переходе предприятий от бумажного к электронному документообороту, при необходимости отредактировать полученный по факсу документ используются системы оптического распознавания символов.
3 Системы оптического распознавания символов Оптическое распознавание символов (англ. optical character recognition, OCR) механический или электронный перевод изображений рукописного, машинописного или печатного текста в последовательность кодов, использующихся для представления в текстовом редакторе. (Википедия)англ.текстовом редакторе С помощью сканера несложно получить изображение cтpaницы текста в графическом файле.
4 Область применения Конвертация книг и документов в электронный вид; Публикации текста на web странице; Автоматизация систем учета.
5 Достоинства Редактирование текста. Поиск слова или фразы. Хранение в компактной форме. Печать без потери качества. Применение к тексту электронного перевода. Форматирование. Преобразование в речь.
6 Сначала необходимо распознать структуру размещения текста на странице: выделить колонки, таблицы, изображения и т. д. Далее выделенные текстовые фрагменты графического изображения страницы необходимо преобразовать в текст. Однако для получения документа в формате текстового файла необходимо провести pacпазнование текста, т. е. преобразовать элементы графического изображения в последовательности текстовых символов.
7 Хорошее качество текста Растровый метод распознавания текста Если исходный документ имеет типографское качество (достаточно крупный шрифт, отсутствие плохо напечатанных символов или исправлений), то задача распознавания решается методом сравнения с растровым шаблоном. Сначала растровое изображение страницы разделяется на изображения отдельных символов. Затем каждый из них последовательно накладывается на шаблоны символов, имеющихся в памяти системы, и выбирается шаблон с наименьшим количеством точек, отличных от входного изображения.
8 Плохое качество текста Структурный метод распознавания При распознавании документов с низким качеством печати (машинописный текст, факс и т. д.) используется метод распознавания символов по наличию в них определенных структурных элементов (отрезков, колец, дуг и др.). Любой символ можно описать через набор параметров, определяющих взаимное расположение eгo элементов. Например, буква «Н» и буква «И» состоят из трех отрезков, два из которых расположены параллельно друг другу, а третий соединяет эти отрезки. Различие между буквами в величине улов, которые составляет третий отрезок с двумя другими. При pacпознавании структурным методом в искаженном символьном изображении выделяются характерные детали и сравниваются со структурными шаблонами символов. В результате выбирается тот символ, для которого совокупность всех структурных элементов и их расположение больше всего coответствуют распознаваемому символу.
9 Программы распознавания текста Преобразованием графического изображения в текст занимаются специальные программы распознавания текста (Optical Character Recognition - OCR). Современная OCR должна уметь многое: распознавать тексты, набранные не только определенными шрифтами, но и самыми экзотическими, вплоть до рукописных. Уметь корректно работать с текстами, содержащими слова на нескольких языках, корректно распознавать таблицы. И самое главное корректно распознавать не только четко набранные тексты, но и такие, качество которых, мягко говоря, далеко от идеала. Например, текст с пожелтевшей газетной вырезки или третьей машинописной копии. Само собой, распознать текст это еще полдела. Не менее важно обеспечить возможность сохранения результата в файле популярного текстового (или табличного) формата скажем, формата Microsoft Word.
11 Система оптического распознавания форм. Бланком называется стандартный лист бумаги, на котором размещается постоянная информация и отведено место для переменной. Сложность состоит в том, что необходимо распознать написанные от руки символы, довольно сильно различающиеся у разных людей. Кроме того система должна распознавать к какому полю относится распознаваемый текст. Для распознавания содержимого необходимо предварительно создать шаблон форм.
12 Наиболее распространенные системы оптического распознавания символов, например, ABBYY FineReader и CuneiForm от Cognitive, используют как растровый, так и структурный методы распознавания. Кроме того, эти системы являются «самообучающимися» (для каждого конкретного документа они создают соответствующий набор шаблонов символов) и поэтому скорость и качество распознавания многостраничного документа постепенно возрастают.
13 Существует также системы On-line распознавания текста: Online OCR и ABBYY FineReader Online
Еще похожие презентации в нашем архиве:
© 2024 MyShared Inc.
All rights reserved.