Компланарные векторы. Цели урока Ввести определение компланарных векторов. Рассмотреть признак компланарности трех векторов и правило параллелепипеда,

Презентация:



Advertisements
Похожие презентации
Компланарные векторы. Новый материал Определение. Векторы называются компланарными, если при откладывании от одной и той же точки они будут лежать в одной.
Advertisements

Подготовила учитель математики Баландина Наталья Михайловна.
Тема урока: Компланарные векторы. Правило параллелепипеда.
Работу выполнили: Зыков Михаил И Гинкель Андрей 11а класс.
Векторы в пространстве Понятие вектора в пространстве Сложение и вычитание векторов Умножение вектора на число Компланарные векторы.
Презентацию выполнила: ученица 10 а класса Левина Даниэль Учитель: Заболотная Раиса Андреевна МОУСОШ 21 г. Волгодонск.
,,,,,,,, Вектор – это направленный отрезок, для которого указаны начало и конец. A B.
Разложение вектора по трем некомпланарным векторам Урок 6.
Компланарные векторы. Правило параллелепипеда. компланарными Векторы называются компланарными, если при откладывании их от одной и той же точки они будут.
Векторы в пространстве вход. Содержание I. Понятие вектора в пространстве Понятие вектора в пространстве II.Коллинеарные векторыКоллинеарные векторы III.Компланарные.
Прямоугольная система координат в пространстве. Геометрия 11 класс.
Векторы в пространстве. Понятие вектора Отрезок, для которого указано, какой из его концов считается началом, а какой – концом, называется вектором. Направление.
ВЕКТОРЫ вход. СОДЕРЖАНИЕ I. Понятие вектора в пространстве Понятие вектора в пространстве II.Коллинеарные векторыКоллинеарные векторы III.Компланарные.
Векторы в пространстве. Содержание I. Понятие вектора в пространстве II.Коллинеарные векторы. III.Компланарные векторы.
Построение перпендикулярной прямой и плоскости Цель: Рассмотреть построение перпендикулярных прямой и плоскости.
Зачет по геометрии в 11 классе Тема: «Векторы в пространстве»
МОУ СОШ 256 г.Фокино. Цели урока: 1.Научиться раскладывать произвольный вектор по координатным векторам. 2.Отработать навыки действий над векторами с.
Векторы Умножение вектора на число Произведением нулевого вектора на число называется такой вектор, длина которого равна, причем векторы и соноправлены.
Действия с векторами. Сложение векторов. Цели урока: Повторить способы сложения векторов Выполнить упражнения по новой теме Закрепить материал с помощью.
Горкунова О.М.. Взаимное расположение в пространстве 2 прямыхПрямой и плоскости2 плоскостей.
Транксрипт:

Компланарные векторы

Цели урока Ввести определение компланарныйх векторов. Рассмотреть признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарныйх векторов.

Новый материал Определение. Векторы называются компланарныйми, если при откладывании от одной и той же точки они будут лежать в одной плоскости. Иначе: векторы называются компланарныйми, если имеются равные им векторы, лежащие в одной плоскости. Любые два вектора компланарный. Три вектора, среди которых имеются два коллинеарных, также компланарный. Почему? Три произвольных вектора могут быть как компланарныйми, так и некомпланарныйми.

Новый материал Устно: 355 D1D1 C B D A C1C1 B1B1 A1A1

Новый материал Признак компланарности трех векторов:

Новый материал Признак компланарности трех векторов: О А В А1А1 В1В1 С

Новый материал 356 A B C D E F

Новый материал 356 A B C D E F

Новый материал Определение. Утверждение, обратное признаку компланарности векторов: Докажем это.

Новый материал ОА В Р Р1Р1 Так как векторы компланарный, то они лежат в одной плоскости.

Новый материал Мы умеем на плоскости складывать векторы по правилу треугольника и параллелограмма. А если в пространстве? Для сложения трех некомпланарныйх векторов пользуются правилом параллелепипеда. В чем оно заключается? Е С В А О D B1B1 A1A1

Решение упражнений 360(а) D1D1 C B D A C1C1 B1B1 A1A1 Определение.

Домашнее задание п. 39, 40 вопросы стр , 360(б), 368(а, б)