«Различные способы решения задач на смеси и сплавы»
В современном мире множество отраслей, связанных с химией, например такие, как пищевая, фармацевтическая, тяжёлая промышленность (производство сплавов чёрных и цветных металлов), медицина, фармакология и т.д. Однако все они связаны не только с химией, но и с математикой, так как приходится решать задачи на процентное содержание в продукте питания, металле, лекарстве, косметике и т.д. тех или иных веществ.
1. Выяснить, какие математические способы позволяют быстро решать задачи на смешивание (сплавление) веществ. 2. Научиться решать задачи по теме 3. Научиться применять математические знания в решении повседневных жизненных задач бытового характера 4. Продолжить работу по изучению текстового редактора word и редактора формул
Перед тем, как приступить к объяснению различных способов решения подобных задач, примем некоторые основные допущения. Все получающиеся сплавы или смеси однородны. При решении этих задач считается, что масса смеси нескольких веществ равна сумме масс компонентов. Определение. Процентным содержанием ( концентрацией) вещества в смеси называется отношение его массы к общей массе всей смеси. Это отношение может быть выражено либо в дробях, либо в процентах. Сумма концентраций всех компонент, составляющих смесь, равна единице.
на вычисление концентрации; на вычисление количества чистого вещества в смеси (или сплаве); на вычисление масса смеси (сплава).
с помощью таблиц с помощью схем старинным арифметическим способом алгебраическим способом с помощью графика построением диаграмм
Решение: Наименование веществ, смесей Процентное содержание вещества Масса раствора (г) Масса вещества (г) Исходный раствор 70 % = 0,72000,7·200 Вода-х- Новый раствор 8 % = 0, х 0,08(200 + х) Анализируя таблицу, составляем уравнение : 0,08(200 + х) = 0,7· ,08 х = 140 0,08 х = 124 х = 1550 Ответ :1,55 кг воды.
15%65% 30% см ммс с Х г (200-х) г 200 г ОТВЕТ :140 г, 60 г. Решение:
При высыхании абрикос испаряется вода, количество сухого вещества не меняется. Схема для решения такой задачи имеет вид: вода с.в. 20% 100% 88% х кг (10-х)кг 10 кг 80% 12% -= Составим уравнение, подсчитав количество сухого вещества в левой и правой части схемы: 0,2 х=8,8 х=44. Ответ:44 кг.
Замечательный русский математик и педагог Леонтий Филиппович Магницкий ( ) фамилию свою получил (1700) от Петра I за умение притягивать к наукам молодых людей. Понимая необходимость улучшения системы образования в России, Петр I издал ряд указов об организации новых учебных заведений. В начале 1701 г. была создана Школа математических и навигацких наук в Москве. Распоряжением царя Магницкий был назначен туда преподавателем математики. В этой школе он и работал до конца жизни. В 1703 г. Магницкий издал свою «Арифметику», представляющую собой для России того времени энциклопедию математических знаний. Она состояла из двух книг, содержащих в общей сложности 662 страницы. Многие задачи и их решения приведены в виде стихотворных поучений. Сборник получился настолько удачным, что более ста лет являлся основным учебным пособием по математике в России. Недаром великий русский ученый Михаил Васильевич Ломоносов назвал «Арифметику » «вратами своей учености».
Решение: Рассмотрим пары 30 и 5; 30 и 40. В каждой паре их большего числа вычтем меньшее и результат запишем в конце соответствующей чёрточки. Получилась схема Из неё делается заключение, что 5% раствора следует взять 10 частей, а 40 % - 25 частей. Узнав, сколько приходится на одну часть 140: (10+25) = 4 г., получаем, что 5% - ного раствора необходимо взять 40 г, а 40% -ного -100 г Ответ: 40 г - 5% -ного раствора и 100 г - 40% - ного раствора
Решение: Обозначим x массу первого раствора, тогда масса второго (600 - x). Составим уравнение: 0,3x + 0,1* (600 - x) = 600 * 0,15 0,3 х ,1 х = 90 0,2 х = 30 x = = 450 г Ответ: 150 г масса 1 раствора, 450 г масса 2 раствора
Приравняв площади, равновеликих прямоугольников получаем 15x = 5 (600- x) 15 х = 3000 – 5 х 15 х + 5 х = х = 3000 Х = – 150 = 450 г. Ответ: 150 г 30% и 450 г 10% раствора
Изучили способы решения задач на смеси и сплавы, расширив свои знания по математике Выяснили, что выбор способа решения, зависит от конкретной задачи Научились решать задачи, найденными способами Увидели красоту, сложность и притягательность данных способов, для решении повседневных жизненных задач бытового характера Закрепили навыки работы на компьютере