Лекция 8 Всемирное тяготение Алексей Викторович Гуденко 05/04/2014
План лекции Закон всемирного тяготения. Теорема Гаусса. Гравитационное поле однородного шара. Финитные и инфинитивные движения. Космические скорости. Законы Кеплера. Параметры траекторий. Примеры решения задач по космической динамике. Космические «парадоксы»
Закон всемирного тяготения. F = -GMm/r 2 Материальные точки притягиваются с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними: F = -GMm/r 2 G = 6, Нм 2 /кг 2 g(r) = F/m = -GM/r 2 Напряжённость поля тяготения g(r) = F/m = -GM/r 2 Принцип суперпозиции: Напряжённость поля, создаваемое несколькими телами, равна векторной сумме напряженностей полей, создаваемых каждым телом в отдельности: g = g 1 + g 2 + … U = - GMm/r Потенциальная энергия гравитационного взаимодействия двух частиц (U() = 0) : U = - GMm/r
Теорема Гаусса Поток вектора g через любую замкнутую поверхность равен полной массе внутри поверхности, умноженной на -4πG: gdS = -4πGΣm i = -4πGρdV. т. Гаусса в дифференциальном форме: divg = -4πGρ
Гравитационные поля в простейших случаях. Плоскость (σ = m/S – поверхностная плотность): g = -2πGσ Цилиндр (ρ l = m/l – линейная плотность): g = -2Gρ l /r Однородный шар (g 0 = GM/R 2 ) : g = - g 0 r/R – внутри шара (r < R) g = - g 0 R 2 /r 2 – вне шара (r R) Энергия единичной массы в поле однородного шара: U = - 3/2g 0 R +1/2 g 0 r 2 /R 2 - внутри шара (r < R) U = - g 0 R 2 /r – вне шара (r R)
Границы движения E = K + U U потенциальная энергия не может превышать полную частица не может находиться в областях I и III II – область финитного движения, частица заперта в «потенциальной яме» IV – область инфинитного движения Из области II в область III частице мешает попасть «потенциальный барьер»
Космические скорости Первая космическая – скорость кругового движения на около земной орбите: v I = (g 0 R) 1/2 = 7,9 км/с Вторая космическая скорость необходима для преодоления земного тяготения: v II = (2) 1/2 v I = (2g 0 R) 1/2 = 11,2 км/с Третья космическая скорость космического аппарата, необходимая для преодоления гравитации Солнца: v III = {(2 1/2 -1) 2 v з 2 + v II 2 } 1/2 16,7 км/с
Законы Кеплера I. Каждая планета движется по эллипсу, в одном из фокусов которых находится Солнце II. Радиус-вектор планеты за равные промежутки времени заметает равные площади III. Квадраты времён обращений планет относятся как кубы больших осей орбит, по которым движутся планеты: (T 2 /T 1 ) 2 = (2a 2 /2a 1 ) 3
Третий закон Кеплера
Вычисление параметров эллиптической орбиты. Радиус круговой орбиты: r = GM/2|ε| Большая п/ось эллипса: a = GM/2|ε| Малая п/ось: b = L/m (2|ε|) 1/2 Период обращения по эллипсу: T 2 = (4π 2 /GM)a 3
Третий закон Кеплера mv 2 /2 – GmM/r = E = const r 2 + GMr/ε – L 2 /2m 2 ε = 0 т. Виета r 1 + r 2 = 2a = - GM/ε r 1 r 2 = b 2 = - L 2 /2m 2 ε = - 2σ 2 /ε b 2 /a = 4σ 2 /GM π 2 a 2 b 2 /a 3 = 4π 2 σ 2 /GM площадь эллипса S = lab T = S/σ T 2 /a 3 = 4π 2 /GM = const
Спутник связи - стационарный спутник: T c = 24 часа. r = ? Период спутника связи T c = 1 сут = 24 часа. T I = 2πR/v I = 84 мин. – время обращения около земного спутника. V экв = 2πR/T c = 460 м/с – скорость точек экватора r = R(T/T 0 ) 2/3 = R(v I /v экв ) 2/3 6,6R По Кеплеру: (T c /T I ) 2 = (r/R) 3 r = R(T/T 0 ) 2/3 = R(v I /v экв ) 2/3 6,6R
Орбита Земли – эллипс? В каких пределах изменяется расстояние от Земли до Солнца? Когда мы к Солнцу ближе, когда дальше? Как изменяется скорость движения Земли вокруг Солнца?
Что длиннее, - полярный день или полярная ночь? Дни летнего и зимнего солнцестояния (22 июня и 22 декабря) делят год пополам. Летний период между днями весеннего и осеннего равноденствия (с 21 марта по 23 сентября) продолжительнее зимнего на одну неделю.
F O A (22.06) P (22.12) M (23.09) N (21.03) Так вращается Земля вокруг Солнца ( вид «сверху» :)) (эллиптичность преувеличена)
Решаем Эллиптичность не велика T S /T 0 (πR 2 /2+ 2FR)/πR 2 = ½ + 2F/πR T W /T 0 (πR 2 /2 - 2FR)/πR 2 = ½ - 2F/πR где R 150 млн. км среднее расстояние от Земли до Солнца; F фокусное расстояние эллипса. относительное изменение расстояния ΔR/R=2F/R= π(T S - T W )/2T 0 = 3%; Относительное изменение скорости ΔV/V = ΔR/R = 3% Абсолютное изменение расстояния – ΔR = R S -R W = 4.5 млн.км., Изменение скорости ΔV = 0,9 км/с
Заглянем в таблицу V max (в перигелии) = 30,3 км/с V min (в афелии) = 29,3 км/с ΔV = 1 км/с (у нас: ΔV = 0,9 км/с) R S = 152,1 млн. км R W = 147,1 млн. км е (эксцентриситет) = 0,0167 (у нас: е = 0,015) ΔR = R S - R W = 5 млн. км. (у нас: ΔR = 4,5 млн.км) ΔR/R = 3,3%; (у нас: ΔR/R = 3%)
От Земли по разным траекториям С полюса Земли запускают ракету со скоростью v 0 : v I < v 0 < v II : 1) вертикально вверх 2) Горизонтально Какая из ракет улетит дальше от Земли? Решение: r 1 = 2a = R/(1 – v 0 2 /2g 0 R) 1) Первая ракета: ЗСЭ: mv 0 2 /2 – mg 0 R = - mg 0 R 2 /r 1 r 1 = 2a = R/(1 – v 0 2 /2g 0 R) r 2 = 2a - R = v 0 2 /2g 0 /(1 – v 0 2 /2g 0 R) 2) Вторая ракета: ЗСМИ: mv 0 R = mvr 2 ; ЗСЭ: mv 0 2 /2 – mg 0 R = mv 2 /2 - mg 0 R 2 /r 2 r 2 = 2a - R = v 0 2 /2g 0 /(1 – v 0 2 /2g 0 R) r 2 /r 1 = v 0 2 /2g 0 R = (v 0 /v II ) 2 < 1
Пример 2. Время падения Луны на Землю Сколько времени будет падать на Землю Луна, если она вдруг остановится? (время обращения Луны T 0 = 28 суток) Решение: По третьему закону Кеплера «период обращения» T по выродившемуся в отрезок эллипсу: (T/T 0 ) 2 = (a/a 0 ) 3 = (R/2R) 3 T = T 0 (a/a 0 ) 3/2 =T 0 /(8) 1/2 τ = T/2 = T 0 /4(2) 1/2 5 суток. Земля упадёт на Солнце : за τ = T/2 = T 0 /4(2) 1/2 2 месяца
Сила сопротивления разгоняет корабль Полная энергия на круговой орбите E = К + П = К + (-2K) = - K = - mv 2 /2 Мощность силы сопротивления N = -F c v равна изменению полной энергии: dE/dt = -F c v mva = F c v ma = F c
Скорость снижения спутника Спутник массой m = 200 кг, запущенный на круговую околоземную орбиту, тормозится в верхних слоях атмосферы. Сила трения F c = Cv 3 (C = кг с/м 2 ). За какое время спутник снизится на Δh = 100 м и как при этом изменится его скорость? (скорость снижения v r = dr/dt = - 2CGM/m = - 2CgR 2 /m = -2Cv I 4 /mg - 1,2 мм/с; t = Δh/v r = 23 часа 1 сутки; Δv = F c Δt/m = gΔh/2v I 6 см/с).
Маневры на орбите: чтобы догнать – надо притормозить! чтобы отстать – надо ускориться! Корабль и орбитальная Станция на одной круговой орбите. До орбитальной станции расстояние L = 300 м. Как приблизиться к Станции. Решение: надо перейти на орбиту с большим на ΔT = T – T 0 = L/v 0 периодом: T/T 0 = (a/a 0 ) 3/2 = (E o /E) 3/2 = (E o /(E 0 + ΔK)) 3/ Δv/v 0 ΔT = 3T 0 Δv/v 0 Δv = L/3T 0 = 2 см/с
Полёт на Марс ( 7.6) Рассчитайте время перелёта с орбиты Земли на орбиту Марса (r м = 1,52 r з ): τ = ½T 0 (1,26) 3/2 = 260 сут 8 мес. 3 недели Решение: (Кеплер III): (T/T 0 ) 2 = (2a 2 /2a 1 ) 3 = {(r з + r м )/2r з } 3 τ = ½T 0 (1,26) 3/2 = 260 сут 8 мес. 3 недели
Метеорит. Прицельное расстояние. Скорость метеорита на большом расстоянии от Земли V 0. Найти наибольшее «прицельное» расстояние b = ? Решение: 1. ЗСМИ для касательной траектории: mv 0 b = mvR b = R(1 + v II 2 /v 0 2 ) 1/2 2. ЗСЭ: mv 0 2 /2 = mv 2 /2 – mgR b = R(1 + v II 2 /v 0 2 ) 1/2. Если r b – промажет. Предельные случаи: 1. v 0 = 0; b = - метеорит упадёт при любых обстоятельствах. 2. V 0 = ; b = R – Земля не сильно искривит траекторию.
Вертикальный бросок с первой космической. На какую высоту поднимется и когда вернётся?