Выполнила: ученица 9 «Б» класса МБОУ СОШ 1 г. Белева Крюкова Е. М. Учитель: Васина С.И год
Оглавление 1 История золотого сечения – 3 стр. Золотое сечение в математике – 4 стр. Золотое сечение в искусстве – 5 стр. Золотое сечение в скульптуре – 6 стр. Золотое сечение в архитектуре – 7-9 стр. Золотое сечение в живописи – 10 стр. Оглавление – 1 стр. Введение – 2 стр. Источники информации – 11 стр.
На протяжении многих веков, для построения гармоничных композиций художники пользуются понятием "Золотое сечение". Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Введение 2
Золотое сечение это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло. Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух. Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 0, 1, 1, 2, 3... и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях. История золотого сечения Термин « золотое сечение » был введён в обиход Мартином Омом в 1835 году. 3
Золотое сечение ( золотая пропорция, деление в крайнем и среднем отношении ) - соотношение двух величин, равное соотношению их суммы к большей из данных величин. Приблизительная величина золотого сечения равна 1, В процентном округлённом значении это деление величины на 62 % и 38 % соответственно. С математической точки зрения, отношение большей части к меньшей в золотом сечении выражается квадратичной иррациональностью и, наоборот, отношение меньшей части к большей Число называется также золотым числом. Золотое сечение в математике 4
Золотое сечение в искусстве На протяжении многих веков, для построения гармоничных композиций художники пользуются понятием "Золотое сечение". Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Под « правилом золотого сечения » в архитектуре и искусстве обычно понимаются асимметричные композиции, не обязательно содержащие золотое сечение математически. Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции « золотого сечения ». Российский зодчий Жолтовский также использовал золотое сечение в своих проектах. Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам золотого сечения. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный. 5
Золотое сечение в скульптуре Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния. Известно, что еще в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения. Пропорции золотого сечения создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях. Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении золотого сечения. Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям. Великий древнегреческий скульптор Фидий часто использовал золотое сечение в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос. Статуя Зевса Олимпийского 6
В книгах о золотом сечении можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими золотое сечение, то с других точек зрения они будут выглядеть иначе. Золотое сечение дает наиболее спокойное соотношение размеров тех или иных длин. Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.). Золотое сечение в архитектуре Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по золотому сечению, то получим те или иные выступы фасада. 7
Известный русский архитектор М. Казаков в своем творчестве широко использовал золотое сечение. Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, золотое сечение можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5). Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова. Золотое сечение в архитектуре 8
Парфенон Здание сената в Кремле Первая клиническая больница имени Н.И. Пирогова Дом Пашкова Золотое сечение в архитектуре 9
Золотое сечение в живописи Переходя к примерам золотого сечения в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. 10
Источники информации ru.wikipedia.org 11