Теорема Безу. Схема Горнера и её применение Учитель математики Романовская Евгения Викторовна Белгородская область Губкинский район МБОУ «Вислодубравская СОШ»
Содержание Вывод формул для схемы Горнера Демонстрация работы схемы Горнера Разложение многочлена по степеням двучлена Домашняя работа
Горнер Уильям Джордж ( ) Английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен (х – а) (схема Горнера).
Вывод формул для схемы Горнера Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r Запишем это равенство подробно: f 0 x n + f 1 x n-1 + f 2 x n-2 + …+f n-1 x + f n = =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +…+ q n-2 x + q n-1 )+r Приравняем коэффициенты при одинаковых степенях: x n : f 0 = q 0 => q 0 = f 0 x n-1 : f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0 x n-2 : f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1 … X 0 : f n = q n - c q n-1 => q n = f n + c q n-1
Демонстрация работы схемы Горнера С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x на двучлен x-2 Записываем коэффициенты исходного многочлена f 0, f 1, f 2, f 3. f0f0 f1f1 f2f2 f3f c 2 Если делим на (x-c), то во второй строке слева пишем с Готовим пустые клетки для остатка r и коэффициентов неполного частного q 0, q 1,q 2 q0q0 q1q1 q2q2 r g 0 :=f 0 =1 1 g 1 := с *g 0 + f 1 * + =2 * 1 + (-5)=-3 g 2 := с *g 1 + f 2 =2 * (-3) + 0=-6 * + r:= с *g 2 + f 3 =2 * (-6) + 8= * + -4 Ответ: g(x)=x 2 -3x-6 ; r= -4. f(x)= (x-2)(x 2 -3x-6)-4
Разложение многочлена по степеням двучлена Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2) f(x)=x 3 +3x 2 -2x+4 =(x+2)(x 2 +x-4) f(x)=x 3 +3x 2 -2x+4= (x+2)((x-1)(x+2)-2) f(x)=x 3 +3x 2 -2x+4= (((1*(x+2)-3)(x+2)-2)(x+2)) f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12
Домашняя работ а 1. Разделить f(x)=2x 5 -x 4 -3x 3 +x-3 на x-3; 2. Используя схему Горнера, найдите целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6 (*Замечание: целые корни многочлена с целыми коэффициентами нужно искать среди делителей свободного члена ±1;±2;±3;±6)
Список литературы 1. Курош А.Г. Курс высшей алгебры 2. Никольский С.М, Потапов М.К. и др. 10 класс Алгебра и начала математического анализа.