Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму, ввиду того что потеря устойчивости может означать.

Презентация:



Advertisements
Похожие презентации
Лекция 3. ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость.
Advertisements

А.В.Бурдаков.Физика плазмы. Теоретические модели, используемые при исследовании плазмы.
Неустойчивость Кельвина-Гельмгольца цилиндрического потока Буринская Т.M., Шевелёв M.M. Институт космических исследований ИКИ – 2011.
Лекция 4. ТИПЫ ДРЕЙФОВЫХ ДВИЖЕНИЙ ЧАСТИЦ В ПЛАЗМЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК Дрейф в неоднородном поле (центробежный и градиентный), поляризационный.
Лекция 9 РАВНОВЕСИЕ ПЛАЗМЫ В ТЕРМОЯДЕРНЫХ УСТАНОВКАХ. ИМПУЛЬСНЫЕ СИСТЕМЫ. Z-ПИНЧИ. Проблемы равновесия плазменных конфигураций, МГД- устойчивость плазмы,
Лекция 7 НЕОКЛАССИЧЕСКАЯ ДИФФУЗИЯ В МАГНИТНОМ ПОЛЕ ТОКАМАКА. ПРОВОДИМОСТЬ ПЛАЗМЫ В МАГНИТНОМ ПОЛЕ. Пролетные и запертые частицы. Три режима потерь - банановый,
Лекция 6 ПОЛОЖИТЕЛЬНЫЙ СТОЛБ ТЛЕЮЩЕГО РАЗРЯДА Тлеющий разряд, открытый еще в XIX веке, стал детально исследоваться с появлением основных соотношений физики.
Сила Ампера, действующая на отрезок проводника длиной Δ l с силой тока I, находящийся в магнитном поле B, F А = IBΔl sin α может быть выражена через силы,
Лекция 6. ВЛИЯНИЕ ПРОСТРАНСТВЕННОГО ЗАРЯДА ЭЛЕКТРОННЫХ И ИОННЫХ ПУЧКОВ. Ограничение тока пространственным зарядом в диоде. Формула Ленгмюра и Богуславского.
Пересечение силовой плоскости. К ак преодолеть пространство? Структурные элементы своими силовыми плоскостями заполняют всё пространство. Рассмотрим прохождение.
Плазма Что такое плазма Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.
Выполнил: Бернадский Андрей ПРОБЛЕМЫ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА, УСТАНОВКА «ТОКАМАК»
Механизм генерации ультранизкочастотных электромагнитных колебаний в пограничной области плазменного слоя Шевелёв М.М., Буринская Т.М. ИКИ РАН «Физика.
Магнитный поток Графическое изображение: силовые линии Касательная к силовым линиям – вектор магнитной индукции Величина магнитного поля – количество силовых.
Явление электромагнитной индукции Электрический ток создает вокруг себя магнитное поле. Следовательно, возможно обратное явление.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Лекция 12 КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн, некоторые из которых.
Энергия и мощность электромагнитного поля. Электромагнитные волны. Лекция 5.
На этом уроке мы рассмотрим поведение в электрическом поле веществ, которые не могут проводить электрический ток (диэлектриков), и тех веществ, которые.
Выполнили: Миков А.Г., Пронин Е.Х. Руководитель: Гуртов В.А. Полевые Транзисторы 01 Старт !
Транксрипт:

Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму, ввиду того что потеря устойчивости может означать разрушение плазмы, исчезновение рабочих параметров и т.д. При проблеме управляемого термоядерного синтеза, ставящей своей целью нагрев плазмы до температур порядка Т= К, возник целый ряд неустойчивостей, препятствующих эффективному нагреву плазмы и вызывающих различные виды потери энергии и частиц плазмы. Основными видами неустойчивостей плазмы являются следующие: 1) магнитогидродинамические (желобковая, токовые), 2) кинетические (пучковая, конусная, дрейфово-конусная). Первый вид неустойчивостей связан с изменением формы плазмы, второй вид обусловлен отклонением ее распределения по скоростям частиц от равновесного распределения. Важной величиной для определения равновесия плазмы является параметр : Лекция 15 УСТОЙЧИВОСТЬ ПЛАЗМЫ

Данное выражение является отношением газокинетического давления и магнитного. В ряде установок по получению горячей плазмы внешняя граница плазмы и вакуума испытывает воздействие этих давлений. Для устойчивости границы плазмы данный параметр должен принимать значения в диапазоне

Предположим, что внутри плазмы расположена тонкая магнитная трубка. В силу вмороженности силовых линий магнитного поля при достаточно высокой проводимости, данная трубка может всплывать к поверхности плазмы под действием газокинетического давления. Рис.1 Вблизи поверхности плазмы такая трубка может создать поверхность, напоминающую чередование желобков и выступов (рис.1). Теоретическое рассмотрение данного явления приводит к условию устойчивости границы в виде:

Данный интеграл берется вдоль данной магнитной трубки, а варьирование производится вдоль радиуса. Неравенство означает, что для устойчивости границы плазмы величина магнитного поля B должна возрастать при увеличении расстояния от оси установки. Если на границе поверхности плазмы образуется выступ (рис.2), то могут произойти следующие явления. Поляризация зарядов приводит к появлению электрического поля E, направленного перпендикулярно к магнитному полю B. В скрещенных полях E и B начинается дрейф частиц обоих знаков вдоль радиуса. В результате размеры данных выступов будут увеличиваться за счет дрейфа. Рис z

Оба вида рассмотренных неустойчивостей препятствуют получению устойчивой плазмы в магнитных ловушках. Для стабилизации плазмы в установках данного типа были созданы дополнительные магнитные поля, обеспечивающие рост суммарного магнитного поля при удалении от оси системы. При наличии данных полей происходит подавление неустойчивостей и граница плазмы становится стабильной. Другой вид гидродинамических неустойчивостей – токовые возникают при прохождении через плазму значительных токов. В установках по получению термоядерной плазмы токи достигают диапазона I= A. Рассмотрим основные виды токовых неустойчивостей: перетяжки, змейки и винтовые неустойчивости. 1) Перетяжки. Предположим, что плазма имеет цилиндрическую форму и ток идет по оболочке плазмы.

Пусть в некотором месте образовалось небольшое уменьшение диаметра – перетяжка (рис.3 а). В плазме при сильных токах будет иметь место пинч-эффект или сжатие шнура плазмы под действием токов. Магнитному давлению тока внутри плазмы будет противодействовать газокинетическое давление, но газ будет перетекать из области перетяжки в обе стороны, и перетяжка будет развиваться. Для стабилизации перетяжек в установке создается продольное магнитное поле B z, которое при наличии высокой проводимости можно считать вмороженным в плазму (рис.3 б). а) б) Рис.3 B I BzBz B I

При сжатии плазмы в месте перетяжки, давлению внешнего магнитного поля B будет противодействовать давление постоянного магнитного поля B z, которое будет стремиться вернуть первоначальную форму плазмы. В силу вмороженности силовые линии поля B z не покинут плазму и обеспечат стабильность плазменного шнура от данных неустойчивостей. 2) Змейки. Другим видом токовых неустойчивостей являются так называемые змейки (рис.4). В результате развития данной неустойчивости шнур плазмы приобретает изгиб (рис.4 а). С внутренней стороны изгиба шнура давление магнитного поля B будет больше, чем с наружной. Поэтому данная неустойчивость будет увеличиваться, не находя никакого противодействия. Для стабилизации неустойчивости вплотную к стенке камеры (1) располагается массивный медный кожух (2) (рис.4 б).

В этом кожухе будут наводиться индукционные токи Фуко, причем с направлением противоположным относительно тока, идущего через плазму. Взаимодействие данных двух токов будет приводить к отталкиванию изогнувшегося шнура плазмы от стенки медного кожуха. В результате будет осуществляться стабилизация шнура в случае неустойчивостей данного типа. а) б) Рис.4 3) Винтовые неустойчивости. Критерий Крускала-Шафранова. Для многих установок, в первую очередь для токамаков, большое значение имеет стабилизация винтовых неустойчивостей плазменного шнура. I PмPм pмpм I I I 1 2

В торообразной конфигурации токамака существуют два поля: осевое (тороидальное) B и поле тока B (рис.5). Результирующее магнитное поле является спиралеобразным с шагом, где r –малый радиус тора. При наличии высокой проводимости плазмы и эффекте вмороженности силовых линий шнур плазмы может приобрести такую же спиральную конфигурацию, как и магнитное поле. Чтобы этого не произошло, шаг спирали h должен превышать длину установки L: Подставим выражение для h в неравенство: Выражение q(r) является запасом устойчивости относительно влияния винтовых неустойчивостей. Данный критерий имеет название Крускала-Шафранова в честь теоретиков впервые получивших данное выражение для плазмы токамаков.

Рис.5 Кинетические неустойчивости в плазме, как правило, связаны с отклонением функции распределения частиц по скоростям в плазме от равновесного максвелловского распределения. В качестве примера можно привести магнитную ловушку, в которой ввиду наличия конуса потерь, отсутствуют электроны в диапазоне малых поперечных энергий. На рис.6 изображена функция (2), которая соответствует распределению по поперечным энергиям, а пунктир (1) показывает вид функции в диапазоне низких энергий в условии равновесия. Распределение по энергиям (2) похоже на ситуацию с инверсной заселенностью энергетических уровней для лазерных сред. B R B r

Рис.6 Механизм возникновения неустойчивости в данном случае связан с нарастанием переменного электрического поля в электромагнитной волне, которая воздействует на заряженные частицы. Как следствие этого, происходит увеличение коэффициента диффузии относительно его классического значения: В результате коэффициент диффузии становится пропорциональным квадрату электрического поля, и диффузия приобретает аномальный характер f( )