Поляризация диэлектриков Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса: Диэлектрики (не проводят ток) полупроводники проводники (проводят ток)
В идеальном диэлектрике свободных зарядов, то есть способных перемещаться на значительные расстояния (превосходящие расстояния между атомами), нет. Но это не значит, что диэлектрик, помещенный в электростатическое поле, не реагирует на него, что в нем ничего не происходит.
Смещение электрических зарядов вещества под действием электрического поля называется поляризацией. Способность к поляризации является основным свойством диэлектриков.
Поляризуемость диэлектрика включает составляющие – электронную, ионную и ориентационную (дипольную).
Поляризуемость Электронная – смещение ядра (+) и электронного облака (-) в атоме Ионная – смещение ионов, образующих вещество, относительно друг друга Ориентационная – ориентирование диполей, образующих вещество, относительно внешнего электрического поля
Главное в поляризации – смещение зарядов в электростатическом поле. В результате, каждая молекула или атом образует электрический момент Р
Внутри диэлектрика электрические заряды диполей компенсируют друг друга. Но на внешних поверхностях диэлектрика, прилегающих к электродам, появляются заряды противоположного знака (поверхностно связанные заряды).
Обозначим – электростатическое поле связанных зарядов. Оно направлено всегда против внешнего поля Следовательно, результирующее электростатическое поле внутри диэлектрика
Поместим диэлектрик в виде параллелепипеда в электростатическое поле Электрический момент тела, можно найти по формуле: – поверхностная плотность связанных зарядов.
Введем новое понятие – вектор поляризации – электрический момент единичного объема. где n – концентрация молекул в единице объема, – электрический момент одной молекулы.
(т.к. – объем параллелепипеда). – проекция P на направление – вектора нормали, тогда
Поверхностная плотность поляризационных зарядов равна нормальной составляющей вектора поляризации в данной точке поверхности. Отсюда следует, что индуцированное в диэлектрике электростатическое поле E' будет влиять только на нормальную составляющую вектора напряженности электростатического поля.
Вектор поляризации можно представить так: (4.1.7) где – поляризуемость молекул, – диэлектрическая восприимчивость – макроскопическая безразмерная величина, характеризующая поляризацию единицы объема.
Величина характеризует электрические свойства диэлектрика. Физический смысл диэлектрической проницаемости среды ε – величина, показывающая во сколько раз электростатическое поле внутри диэлектрика меньше, чем в вакууме: (4.1.10)
Сегнетоэлектрики Пьезоэлектрики Электреты Пироэлектрики Различные виды диэлектриков
В 1920 г. была открыта спонтанная (самопроизвольная) поляризация. Всю группу веществ, назвали сегнетоэлектрики (или ферроэлектрики). Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно, вектор поляризации в разных направлениях разные. Сегнетоэлектрики
Сегнетоэлектрики – вещества, обладающие самопроизвольной поляризацией в отсутствии электрического поля
Рассмотрим основные свойства сегнетоэлектриков: 1. Диэлектрическая проницаемость ε в некотором температурном интервале велика( ). 2. Значение ε зависит не только от внешнего поля E0, но и от предыстории образца. 3. Диэлектрическая проницаемость ε (а следовательно, и Р ) – нелинейно зависит от напряженности внешнего электростатического поля (нелинейные диэлектрики).
Это свойство называется диэлектрическим гистерезисом Здесь точка а – состояние насыщения.
Точка Кюри – температуры, при которой (и выше) сегнетоэлектрические свойства пропадают. При этой температуре происходит фазовый переход 2-го рода. Например, титанат бария: 133º С; сегнетова соль: – º С; ниобат лития 1210º С.
Обычно, сегнетоэлектрики не бывают однородно поляризованы, а состоят из доменов – областей с различным направлением поляризации.
Среди диэлектриков есть вещества, называемые электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электростатического поля (аналоги постоянных магнитов). Электреты
Пьезоэлектрики Некоторые диэлектрики поляризуются не только под действием электрического поля, но и под действием механической деформации. Это явление называется пьезоэлектрическим эффектом. Явление открыто братьями Пьером и Жаком Кюри в 1880 году. Если на грани кристалла наложить металлические электроды (обкладки) то при деформации кристалла на обкладках возникнет разность потенциалов. Если замкнуть обкладки, то потечет ток.
Пьезоэлектрики Пьезоэлектрики – диэлектрики, в которых возникает поляризация под действием механического напряжения
Возможен и обратный пьезоэлектрический эффект: Возникновение поляризации сопровождается механическими деформациями. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0.
Сейчас известно более 1800 пьезокристаллов. Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Используются в пьезоэлектрических адаптерах и других устройствах). Используются в пьезоэлектрических адаптерах и других устройствах).
Пироэлектрики Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов.
Все пироэлектрики являются пьезоэлектриками, но не наоборот. Некоторые пироэлектрики обладают сегнетоэлектрическими свойствами.
В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.
График зависимости напряженности электростатического поля шара от радиуса, с учетом диэлектрической проницаемости двух сред ( и ), показан на рисунке Как видно из рисунка, напряженность поля изменяется скачком при переходе из одной среды в другую.
Вектор электрического смещения Имеем границу раздела двух сред с ε1 и ε2, так что, ε1 < ε2 или Напряженность электрического поля E изменяется скачком при переходе из одной среды в другую.
Главная задача электростатики – расчет электрических полей, то есть в различных электрических аппаратах, кабелях, конденсаторах,…. Эти расчеты сами по себе не просты да еще наличие разного сорта диэлектриков и проводников еще более усложняют задачу.
Для упрощения расчетов была введена новая векторная величина – вектор электрического смещения (электрическая индукция). Из предыдущих рассуждений E1ε1 = ε2E2 тогда ε0ε1E1 = ε0ε2E2 отсюда и D n1 = D n2.
Таким образом, вектор остается неизменным при переходе из одной среды в другую и это облегчает расчет.
Зная и ε, легко рассчитывать
отсюда можно записать: (4.3.3) – вектор поляризации, χ – диэлектрическая восприимчивость среды, характеризующая поляризацию единичного объема среды. где
Для точечного заряда в вакууме Для имеет место принцип суперпозиции, как и для, т.е.
Поток вектора электрического смещения. Теорема Остроградского-Гаусса для вектора Пусть произвольную площадку S пересекают линии вектора электрического смещения под углом α к нормали:
В однородном электростатическом поле поток вектора равен:
Теорему Остроградского-Гаусса для вектора D получим из теоремы Остроградского-Гаусса для вектора E :
Теорема Остроградского-Гаусса для Поток вектора через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объема, ограниченного данной поверхностью. Это позволяет не рассматривать связанные (поляризованные) заряды, влияющие на и упрощает решение многих задач. В этом смысл введения вектора
Изменение и на границе раздела двух диэлектриков Рассмотрим простой случай : два бесконечно протяженных диэлектрика с ε1 и ε2, имеющих общую границу раздела, пронизывает внешнее электростатическое поле.
Пусть Из п. 4.3 мы знаем, что и
Образовавшиеся поверхностные заряды изменяют только нормальную составляющую а тангенциальная составляющая остается постоянной, в результате направление вектора изменяется:
То есть направление вектора E изменяется: Это закон преломления вектора напряженности электростатического поля.
Рассмотрим изменение вектора D и его проекций и
Т.к., то имеем: т.е. – нормальная составляющая вектора не изменяется. т.е. тангенциальная составляющая вектора увеличивается в раз
закон преломления вектора D.
Объединим рисунки 4.12 и 4.13 и проиллюстрируем закон преломления для векторов E и D :
Как видно из рисунка, при переходе из одной диэлектрической среды в другую вектор – преломляется на тот же угол, что и Входя в диэлектрик с большей диэлектрической проницаемостью, линии и удаляются от нормали.