АВТОНОМНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ САХА (ЯКУТИЯ) «РЕГИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ В Г.МИРНОМ» Выполнил:Закиров Богдан Вячеславович БГУ-13/9 Косенко Владимир.

Презентация:



Advertisements
Похожие презентации
Практическое применение теоремы Пифагора. У египтян была известна задача о лотосе. «На глубине 12 футов растет лотос с 13- футовым стеблем. Определите,
Advertisements

Теорема Пифагора. Треугольники имеющие стороны: 3, 4, 5 6, 8, 10 5, 12, 13 прямоугольные.
Теорема Пифагора «Решение задач». Заповеди Пифагора.
Теорема Пифагора в науке и жизни Выполнила Жирнова Елена ученица 8«А» класса МОУ СОШ 4 «ЦО».
ТЕОРЕМА ПИФАГОРА ПРИМЕНЕНИЕ. ОБЛАСТИ ПРИМЕНЕНИЯ Строительство Астрономия Мобильная связь.
1. Теорема Пифагора Теорема Пифагора 2. Применение в жизни т. Пифагора Применение в жизни т. Пифагора 3. Задачи на применение т. Пифагора Задачи на применение.
ИСТОРИЧЕСКИЕ ЗАДАЧИ и не только Применение теоремы Пифагора.
ЗАДАЧИ: Задача индийского математика XII века Бхаскары ТЕОРЕМАПИФАГОРАТЕОРЕМАПИФАГОРА На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал.
ТЕОРЕМА ПИФАГОРА СТАРИННЫЕ ЗАДАЧИ учительматематики Лачкова Н.Н.
Выполнил: ученик 8 класса Прищеп Вячеслав Руководитель: учитель математики Фильченко И.А. Применение теоремы Пифагора МОУ «Новопетровская основная общеобразовательная.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство « убогих.
Кроссворд Вопросы: 1.Равенство двух отношений. 2.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны. 3.Древнегреческий учёный,
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!» 1.
К М Р Найти МК Найти МР. К М Р
Решение задач на применение теоремы Пифагора Автор: Рычкова Валентина Геннадьевна, учитель математики учитель математики СОУ «Свердловская СОШ» СОУ «Свердловская.
Теорема Пифагора. Цель урока: Изучить одну из основных теорем геометрии, познакомиться с основными этапами жизни и деятельности Пифагора.
Урок геометрии по теореме Пифагора Трофимова Людмила Викторовна учитель математики Сиверская гимназия 1.
Теорема Пифагора 8 класс. Цель урока: Закрепить умения применять теорему Пифагора и теорему, обратную теореме Пифагора, при решении задач.
Руководитель проекта: Мешулина Л.Б., учитель математики МОУ «Андреевская средняя общеобразовательная школа» Судогодского района, Владимирской области.
Транксрипт:

АВТОНОМНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ САХА (ЯКУТИЯ) «РЕГИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ В Г.МИРНОМ» Выполнил:Закиров Богдан Вячеславович БГУ-13/9 Косенко Владимир Валентинович П-13/9 Руководитель: Фаркова Е.А.. преподаватель математики Практическое применение теоремы Пифагора

Успех развития многих областей науки и техники Развитие различных направлений математики. Широкое внедрение математических методов в технику и народное хозяйство Создание новых, эффективных методов качественного и количественного исследования Актуальность

С помощью теоремы Пифагора можно решать не только математические задачи.

Собрать информацию о практическом применении теоремы Пифагора в различных источниках и определить области применения теоремы. Показать применение теоремы при решении исторических задач. Решить прикладные задачи по установке ёлки и молниеотвода, исследование крыши Обработать собранные данные по теме. Оформить наработанный материал в виде проекта. Задачи: Выяснить области применения теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Задача Бхаскари: «На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?» Решение: По теореме Пифагора АВ 2 =ВС 2 +АС 2 ; 9+16=25, АВ=5 Футов; СD=3+5=8 футов. Ответ: высота тополя 8 футов.

« Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды, и какова длина камыша?». Решение: По теореме Пифагора (x+1) 2 =x 2 +25; 2x=24, x=12 чи.; 12+1=13 чи. Ответ: глубина воды-12 чи, длина камыша-13 чи.

Имеется бамбук высотой в 1 чжан. Вершину его согнули так, что она касается земли на расстоянии 3 чи от корня (1 чжан = 10 чи).Какова высота бамбука после сгибания? Задача о бамбуке из древнекитайского трактата "Гоу-гу"

«Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, калико стоп сея лестницы нижний конец от стены отстоять иметь». Решение: ВС 2 =АВ 2 -АС 2 ; ВС 2 = =44 стоп. Ответ: ВС=44 стоп

"натягиватель веревок" Окно готического стиля R = b / 2 и r = b / 4. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем: (b/4+p) ²=( b/4) ²+( b/2-p) ² или b²/16+ bp/2+p²=b²/16+b²/4-bp+p², откуда bp/2=b²/4-bp. Разделив на b и приводя подобные члены, получим: (3/2)p=b/4, p=b/6.

Задача. При строительстве домов и коттеджей часто встает вопрос о длине стропил для крыши, если уже изготовлены балки. Например: в доме задумано построить двускатную крышу (форма в сечении). Какой длины должны быть стропила, если изготовлены балки AC=8 м., и AB=BF Решение: Треугольник ADC - равнобедренный AB = BC = 4 м., BF=4 м. Если предположить, что FD=1,5 м., тогда: из треугольника DBC: DB = 2,5 м, DC =4,7 м, из треугольника из треугольника ABF: AF= 5,7 м

Молниеотвод защищает от молнии все предметы, расстояние которых от его основания не превышает его удвоенной высоты. Необходимо определить оптимальное положение молниеотвода на двускатной крыше, обеспечивающее наименьшую его доступную высоту. Решение: По теореме Пифагора h2 a2+b2, значит h(a2+b2)1/2.

Какую наибольшую высоту должна иметь антенна мобильного оператора, чтобы передачу можно было приниметь в радиусе R=200 км? (радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB=OA+AB OB=r + x. Используя теорему Пифагора, получим ответ: 2,3 км.

Исключительное внимание со стороны математиков и любителей математики к теореме основано на ее простоте, красоте и значимости; С помощью этой теоремы можно вывести большинство теорем геометрии. (только 17 теорем Евклида исходят из теоремы Пифагора); теорема Пифагора на протяжении многих веков служит толчком к интересным и важным математическим открытиям (теорема Ферма, теория относительности Эйнштейна); Теорема Пифагора нашла своё применение в строительстве и архитектуре, мобильной связи, литературе.

Спасибо за внимание.