Цилиндр: история Слово "цилиндр" происходит от греческого kylindros, что означает "валик", "каток " … Слово "цилиндр" происходит от греческого kylindros,

Презентация:



Advertisements
Похожие презентации
Призма Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые.
Advertisements

Презентация на тему: «Призма». Содержание:Содержание: 1.) О ОО Определение призмы. 2.) виды призм: - прямая призма; - наклонная призма; - правильная призма;
Объем прямой призмы. Теорема: объем прямой призмы равен произведению площади основания на высоту.
Объем и его свойства Выполнила ученица 11 «Б» класса Качук Мария.
Объем наклонной призмы, пирамиды и конуса
ОБЪЕМЫ НАКЛОННОЙ ПРИЗМЫ, ПИРАМИДЫ, КОНУСА Геометрия 11 класс Р.О.Калошина ГОУ лицей 533 Санкт-Петербург.
Презентация к уроку по теме: Презентация к уроку "Вычисление объёмов тел вращения. Применение Интеграла"
ВЫЧИСЛЕНИЕ ОБЪЕМОВ ТЕЛ С ПОМОЩЬЮ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА.
Объемы пространственных фигур фигурВычисление объемов геометрических тел с помощью определенного интеграла.
Работу выполнили:Шабалина Мария и Ганджалян Жанна Преподаватель геометрии: Хайбрахманова Г.Ф.
Северо-Западный Административный Округ, Школа69 им. Б.Ш.Окуджавы. Учитель математики Мищенко О. В Москва, г.
Определенный интеграл Опр. Под определенным интегралом от данной непрерывной функции на отрезке соответствующее приращение ее первообразной. понимается.
Объем конуса 11 класс. Теорема Объем конуса равен одной трети произведения площади основания на высоту. h х х O A A1A1A1A1 М М1М1М1М1 R R1R1R1R1.
Тела вращения. Объём цилиндра. Объём конуса.
Объемы тел Объем прямоугольного параллелепипеда Объем прямоугольного параллелепипеда Объем прямой призмы и цилиндра Объем прямой призмы Объем наклонной.
Объем конуса. Работу выполнили Ученицы 11 класса МОУ «Тугустемирская СОШ» Кудряшова Наташа Дусаева Гульнара.
Презентация к уроку (алгебра, 11 класс) на тему: Презентация по алгебре 11 класс "Первообразная. Интеграл"
Объёмы тел Свойства: 1.Равные тела имеют равные объёмы. Объём всего тела складывается из объёмов составляющих его тел. 2.Если тело составлено из нескольких.
Вписанные и описанные тела. Цилиндр, описанный около призмы Цилиндр можно описать около прямой призмы если ее основание – многоугольник, вписанный в окружность.
Урок 2 Определенный интеграл. О. Под определенным интегралом от данной непрерывной функции f(x) на данном отрезке [a;b] понимается соответствующее приращение.
Транксрипт:

Цилиндр: история Слово "цилиндр" происходит от греческого kylindros, что означает "валик", "каток " … Слово "цилиндр" происходит от греческого kylindros, что означает "валик", "каток " …

Цилиндры из жизни

Цилиндры-башни Водовзводная башня (Москва) Собственный дом архитектора К.Мельникова (Москва) Замок Сфорца (Милан)

Объём цилиндра Основание цилиндра - круг

Объём цилиндра

Призма называется вписанной в цилиндр, если ее вершины лежат на окружностях, ограничивающих основания цилиндра Призма называется описанной около цилиндра, если ее основания - многоугольники, вписанные в основания цилиндра

Объём цилиндра равен произведению площади основания на высоту. Объём цилиндра равен произведению площади основания на высоту.

Если функция f(x) непрерывна на промежутке I числовой оси, содержащей точки х = а и х = b, то разность значений F (b) – F (a) (где F(x) - первообразная f(x) на I) называется определенным интегралом от функции f(x) от a до b. Если функция f(x) непрерывна на промежутке I числовой оси, содержащей точки х = а и х = b, то разность значений F (b) – F (a) (где F(x) - первообразная f(x) на I) называется определенным интегралом от функции f(x) от a до b. формула Ньютона-Лейбница.

Вычисление объёмов тел. 1. Заключаем тело Т между двумя параллельными плоскостями. 2. Вводим систему координат так, что ось ОХ перпендикулярна плоскостям. 3. Проводим плоскость Ф(х) параллельно плоскостям через точку с абсциссой х. 4. Определяем вид сечения и выражаем площадь через функцию S(х). 5. Проверяем, является ли функция S(х) непрерывной на [a;b].

6. Разбиваем [a;b] на n - равных отрезков точками а = х 0, х 1, х 2, …х n =b и проводим через х i плоскости перпендикулярно ОХ. 7. Плоскости разбивают тело Т на n- тел Т 1, Т 2, Т 3,... Т n с основаниями Ф(х i ) и высотой x i = (b - a)/n 8. V V n = (S(x 1 ) + S(x 2 ) +…+ S (x n ) ) x i = (S(x 1 ) + S(x 2 ) +… + S (x n ))(b - a)/n. При n, V n V, поэтому но 9.

Задача 1. Найти объём наклонной треугольной призмы с основанием S и высотой h. 1. Введём ось ОХ перпендикулярно основаниям призмы. 2. (АВС) OX=a, a=0, (A 1 B 1 C 1 ) OX=b, b=h 3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х. А 2 В 2 С 2 -треугольник, равный основаниям. Площадь А 2 В 2 С 2 равна S. Ответ: V=Sh 4. S(x) непрерывна на [0;h] 5.

. 2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h. Выразим объем каждой треуголь­ной призмы по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен S * h. Теорема доказана.

АЛГОРИТМ ВЫЧИСЛЕНИЯ ОБЪЁМОВ ГЕОМЕТРИЧЕСКИХ ТЕЛ С ПОМОЩЬЮ ОПРЕДЕЛЁННОГО ИНТЕГРАЛА. 1. Ввести систему координат так, что ось ОХ перпендикулярна основанию геометрического тела. 2. Найти пределы интегрирования а и b. 3. Провести сечение плоскостью перпендикулярно оси ОХ через точку с абсциссой х. Определить вид сечения, задать формулой его площадь как функцию S(X). 4. Проверить непрерывность функции S(X) на [a;b]. 5.

Задание: Найти объёмы геометрических тел с помощью определённого интеграла.