Симметрия предметов на плоскости. Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе,

Презентация:



Advertisements
Похожие презентации
Осевая и центральная симетрия Осевая и центральная симетрия г.
Advertisements

Презентация на тему: Работу выполнили: Мельничук Людмила 9 «Б» Гусакова Елена 9 «Б»
Симметрия в природе, быту Симметрия воспринимается нами как элемент красоты вообще и красоты природы в частности. Все, что находится в природе, математически.
Симметрия: центральная и осевая Интегрированный урок по математике, биологии и информатике, 6 класс.
Симметрия "...быть прекрасным - значит быть симметричным и соразмерным." Платон (древнегреческий философ, 428 – 348 г. до н.э.)
Содержание 2. Движения относительно точки 3. Движения относительно прямой 5. Зеркальная симметрия 6. Заключение 1. Введение 4. Параллельный перенос Закончить.
Введение Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В. И. Вернадский ( ), " слагалось.
Красногривенская средняя общеобразовательная школа. « Этот удивительный мир симметрии » Работу выполнили ученики 8 класса: Сотникова Дарья, Воронов Виталий.
Самотаева Ирина 9 Б Симметрия и ее виды ЮВАО ГОУ СОШ 1968 Руководитель проекта: Никифорова Марина Николаевна
А А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1. Точка О считается симметричной.
Зеркальная симметрия. Симметрия - это гармония в расположении одинаковых предметов какой-либо группы или частей в одном предмете, причем расположение.
Косулиной Анны 8 «А» класс Осевая и центральная симметрии.
Симметрия в пространстве Симметрия относительно точки, прямой, плоскости; Симметрия в природе и на практике.
Симметрия вокруг нас «...быть прекрасным значит быть симметричным и соразмерным.» Платон.
Данная презентация изготовлена учителем математики Сосенской средней щколы N1 Градовой Л. М. Осевая и центральная симметрии.
Симметрия в пространстве. Центр симметрии Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА.
Зеркальная симметрия Выполнил работу ученик 9Б класса Средней школы 9 Батурин Евгений.
Осевая симметрия многогранников
Простейшие виды симметрии симметрия относительно плоскости (зеркальная симметрия) симметрия относительно точки (центральная симметрия) симметрия относительно.
Выполнила: Манёнкова Кристина Ученица 11 класса Проверила: Салина Н.П.
Транксрипт:

Симметрия предметов на плоскости. Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе, быту, архитектуре и технике.

Симметрия в быту

Симметрия в науке и технике.

Симметрия в архитектуре

Центральная симметрия Геометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам ( AC = CE ). Точка C называется центром симметрии.

Зеркальная симметрия. Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E этой же фигуры, так что отрезок EE перпендикулярен плоскости S и делится этой плоскостью пополам ( EA =AE ). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными.

Симметрия вращения Тело ( фигура ) обладает симметрией вращения ( рис.106 ), если при повороте на угол 360°/n ( здесь n – целое число ) вокруг некоторой прямой AB ( оси симметрии ) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию.

Примеры вышеупомянутых видов симметрии Шар ( сфера ) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии – диаметр шара. Круглый конус обладает осевой симметрией; ось симметрии – ось конуса. Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

Симметрия плоских фигур Зеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), т о прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной

Центральная симметрия. Если плоская фигура ( ABCDEF, рис.108 ) имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры (прямая MN, рис.108 ), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

Примеры симметрии плоских фигур Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей. Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции. Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения.

Симметрия в природе Симметрия в нашем представлении тесно связана с понятием красоты Представления о красоте и совершенстве родились и упрочились под воздействием окружающей природы еще у наших далеких предков.. Особенно поражали кристаллы правильностью своих пропорций, безукоризненным повторением формы.

Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Все твердые тела состоят из кристаллов Кристаллы алмаза Кристаллы каменной соли, кварца, арагонита

Не только кристаллы, большинство творений природы обычно обладают той или иной формой симметрии. Земля вполне могла бы быть названа царством симметрии. Природа использовала все ее основные виды, которые можно представить по геометрическим соображениям. Подавляющее число живых организмов обладает одной из трех ее видов: шаровидной, лучевой, двусторонняя симметрией.

Симметрия в животном мире

Симметрия в растительном мире

Почему разные организмы обладают разными видами симметрии? Это связано с их образом жизни.

Каждая из изображенных фигур бабочка, лист растения, дерево обладает лишь одним видом симметрии, делящей ее на две зеркально равные части. Поэтому данный вид симметрии в биологии называется двусторонней или билатеральной

Спасибо за внимание!! Спасибо за внимание!! Приготовил:М. Даниров 9 а класс Проверила: Светлана Анатольевна

Конец Конец