Центральная симметрия Математик любит прежде всего симметрию. Джеймс Максвелл.

Презентация:



Advertisements
Похожие презентации
Центральная симметрия. Движение. Виды движения. Движение в пространстве - это отображение пространства на с ебя, сохраняющее расстояние между точками.
Advertisements

ДВИЖЕНИЕ Движением называется преобразование пространства, сохраняющее расстояния между точками, т. е., если точки A и B переходят соответственно в точки.
Движение Движением (или перемещением) фигуры называется такое ее отображение, при котором каждым двум ее точкам A и B соответствуют такие точки A' и B',
Выполнили: Тимошкин Иван, Никитин Никита, Кривобатова Юля САРАНСК 2009 МОУ(средняя школа 40)
Центральная симметрия Точки A и A' пространства называются симметричными относительно точки O, называемой центром симметрии, если O является серединой.
Центральная симметрия Точки A и A' пространства называются симметричными относительно точки O, называемой центром симметрии, если O является серединой.
Понятие движения. Преобразование фигур F G Преобразование фигуры, которое сохраняет расстояние между точками, называется движением этой фигуры.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
03.04 Симметрия относительно точки. Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1. Точка О считается.
Движения. Движения. Движением в геометрии называют Движением в геометрии называют отображение, сохраняющее расстояния. отображение, сохраняющее расстояния.
Определение Виды движения Свойства движения Задачи на построение Примеры движения в курсе алгебры Движение вокруг нас.
Выполнил ученик 11 Б класса Михайлов Антон. М M О Пусть О - точка в пространстве. Рассмотрим отображение пространства на себя, при котором точка О остается.
Центральная симметрия. Что такое симметрия? Какую симметрию называют центральной? Примеры центральной симетрии.
Точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О – центр симметрии. Точка О считается симметричной.
Движением в геометрии называют отображение, сохраняющее расстояния. ученика 11 Б класса Сероглазова Виталия средней школы 1.
Движения. Движением в геометрии называют отображение, сохраняющее расстояния.
Выполнила ученица 11 класса Гейнрих Юлия Проверила учительница математики Яковенко Елена Алексеевна.
Презентацию подготовили: ученики 9А класса Шишов Рихард, Васильченко Алексей и Соловьёв Иван.
ДВИЖЕНИЕ в пространстве Выполнили ученицы 11 «В» класса Мезяева Юлия Вдовенкова Мария.
Транксрипт:

Центральная симметрия Математик любит прежде всего симметрию. Джеймс Максвелл

АВ О Центральная симметрия. Центральная симметрия – это отображение пространства на себя, при котором любая точка переходит в симметричную ей точку, относительно центра О. Точка О называется центром симметрии фигуры. Две точки А и В называются симметричными относительно точки О, если О - середина отрезка АВ. Точка О считается симметричной самой себе. На рисунке точки М и М 1, N и N 1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки. М М1М1 N N1N1 О Р Q

Теорема. Центральная симметрия – движение. Доказательство: Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X' и Y'. Тогда, как ясно из определения центральной симметрии, OX' = -OX, OY' = -OY. Вместе с тем XY = OY - OX, X'Y' = OY' - OX' Поэтому имеем: X'Y' = -OY + OX = -XY Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия. Y' Y X' X O Свойство центральной симметрии: центральная симметрия переводит прямую (плоскость) в себя или в параллельную ей прямую (плоскость).

Центральная симметрия в прямоугольной системе координат. Если в прямоугольной системе координат точка А имеет координаты (x 0 ;y 0 ), то координаты (-x 0 ;-y 0 ) точки А 1, симметричной точке А относительно начала координат, выражаются формулами: x 0 = -x 0 y 0 = -y 0 у х 0 А(x 0 ;y 0 ) А 1 (-x 0 ;-y 0 ) x0x0 -x 0 y0y0 -y 0

Примеры из жизни. Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма точка пересечения его диагоналей. Центральная симметрия встречается в форме воздушного и подводного транспорта (воздушный шар, парашют), архитектуре, технике, искусстве и быту. Центральная симметрия наиболее характерна для плодов растений и некоторых цветов(голубика, черника, вишня, цветок мать-и-мачехи, цветок кувшинки), а также для животных, ведущих подводный образ жизни (амёба). О О

Примеры из жизни. Одним из самых красивых примеров центральной симметрии является снежинка. Центральную симметрию имеют многие геометрические тела. К ним следует отнести все правильные многогранники (за исключением тетраэдра), все правильные призмы с четным числом боковых граней, некоторые тела вращения (эллипсоид, цилиндр, гиперболоид, тор, шар). Куб Октаэдр Икосаэдр Додекаэдр Три различных гиперболоида

Примеры решения задач. Дано: ABCD - параллелограмм, треугольники ABM, BCK, CDP, DAH - правильные Доказать: KPHM - параллелограмм Решение: Рассмотрим центральную симметрию (поворот на 180 градусов) относительно точки O. Пусть f - центральная симметрия. f(B) = D, f(A) = C, f(D) = B, f(C) = A. При центральной симметрии f треугольник BCK (правильный) перейдет в равный ему треугольник DAH (правильный), по свойствам осевой симметрии (углы сохраняются). Аналогично треугольник AMB переходит в треугольник CPD. f(M) = P, f(K) = H, отсюда KO = OH, MO = OP, по признаку параллелограмма, KPHM – параллелограмм.

Дано: угол ABC, точка D Построить отрезок с концами на сторонах данного угла, середина которого находилась бы в точке D Решение: Построим точку B' симметричную точке B. Пусть D - центр симметрии, BD = DB'. Проведём прямую A'B', параллельную прямой BC и прямую B'C', параллельную прямой AB. Прямые A'B' и B'C' симметричны прямым ВС и AB соответственно относительно точки D. Значит, точка A' симметрична точке C' относительно точки D. Отсюда следует, что A'D = DC'.