Иоганн I Бернулли
швейцарский математик, самый знаменитый представитель семейства Бернулли, младший брат Якоба Бернулли, отец Даниила Бернулли
Иоганн стал магистром (искусств) в 18 лет, перешёл на изучение медицины, но одновременно увлёкся математикой (хотя медицину не бросил). Вместе с братом Якобом изучает первые статьи Лейбница о методах дифференциального и интегрального исчисления, начинает собственные глубокие исследования. 1691: будучи во Франции, пропагандирует новое исчисление, создав первую парижскую школу анализа. По возвращении в Швейцарию переписывается со своим учеником маркизом де Лопиталем, которому оставил содержательный конспект нового учения из двух частей: исчисление бесконечно малых и интегральное исчисление.
В качестве концептуальной основы действий с бесконечно малыми Иоганн сформулировал в начале лекций три постулата (первая попытка обоснования анализа): 1. Величина, уменьшенная или увеличенная на бесконечно малую величину, не уменьшается и не увеличивается. 2. Всякая кривая линия состоит из бесконечно многих прямых, которые сами бесконечно малы. 3. Фигура, заключенная между двумя ординатами, разностью абсцисс и бесконечно малым куском любой кривой, рассматривается как параллелограмм.
В этом же 1691 году появился первый печатный труд Иоганна в Acta Eruditorum: он нашёл уравнение «цепной линии» 1692: получено классическое выражение для радиуса кривизны кривой. 1693: подключился к переписке брата с Лейбницем. 1694: защитил докторскую диссертацию по медицине, женился. У него родились 5 сыновей и 4 дочери. В ответ на письмо Лопиталя сообщает ему метод раскрытия неопределённостей, известный сейчас как «правило Лопиталя»
Печатает в Acta Eruditorum статью «Общий способ построения всех дифференциальных уравнений первого порядка». Здесь появились выражения «порядок уравнения» и «разделение переменных» последним термином Иоганн пользовался ещё в своих парижских лекциях. Выражая сомнение в сводимости любого уравнения к виду с разделяющимися переменными, Иоганн предлагает для уравнений первого порядка общий прием построения всех интегральных кривых при помощи изоклин в определяемом уравнением поле направлений. 1695: По рекомендации Гюйгенса становится профессором математики в Гронингене.Гюйгенса Гронингене 1696: Лопиталь выпускает в Париже под своим именем первый в истории учебник по математическому анализу: «Анализ бесконечно малых для исследования кривых линий» (на французском языке), в основу которого была положена первая часть конспекта Бернулли.Лопиталь 1696: Иоганн публикует задачу о брахистохроне: найти форму кривой, по которой материальная точка быстрее всего скатится из одной заданной точки в другую. Ещё Галилей размышлял на эту тему, но ошибочно полагал, что брахистохрона дуга окружности.
1699: вместе с Якобом избран иностранным членом Парижской Академии наук. 1702: совместно с Лейбницем открыл приём разложения рациональных дробей (под интегралом) на сумму простейших. 1705: вернулся в Базельский университет, профессором греческого языка. Восемь раз был избран деканом факультета философии, и дважды ректором университета. Сразу после смерти брата Якоба (1705) Иоганн был приглашён на его кафедру в Базеле и занимал её до самой смерти (1748). Незадолго до кончины он опубликовал свою переписку с Лейбницем, представляющую огромный исторический интерес.Базеле Другие научные заслуги: Иоганн Бернулли поставил классическую задачу о геодезических линиях и нашёл характерное геометрическое свойство этих линий, а позднее вывел их дифференциальное уравнение. В 1743 году опубликована монография «Гидравлика», где при исследовании успешно применяется закон сохранения энергии (живой силы, как тогда говорили). Необходимо также отметить, что он воспитал множество учеников, среди которых Эйлер и Даниил Бернулли.Эйлер Даниил Бернулли К его портрету Вольтер написал четверостишие:Вольтер В честь Якоба и Иоганна Бернулли назван кратер на Луне.
Конец Презентацию выполнили студентки Группы Др-202 Дымова.О. и Самойлова.Е.