Баринова Е.Г, школа 60 г. Ташкент
Рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур; Уметь строить симметричные точки и уметь распознавать фигуры, являющиеся симметричными относительно точки или прямой; Совершенствование навыков решения задач; Продолжить работу над аккуратностью записи и выполнения геометрического чертежа
Научиться распознавать симметричные фигуры среди других; Научиться сравнивать предметы; Научиться сравнивать предметы; Учиться анализировать, делать выводы; Учиться анализировать, делать выводы; Выпустить тематическую газету Выпустить тематическую газету
Симметрия! Я гимн тебе пою! Тебя повсюду я в мире узнаю. Ты в Эйфелевой башне, в малой мошке, Ты в елочке, что у лесной дорожки С тобою в дружбе и тюльпан, и роза, И снежный рой – творение мороза. Антонов К.
Прекрасный, безграничный, На взгляд совсем привычный, Но чем-то необычный Со словом «симметричный» Открылся мир вокруг.
«Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство». Герман Вейль
«Симметрия» - слово греческого происхождения. Оно означает соразмерность, наличие определенного порядка, закономерности в расположении частей
Симметрия относительно оси Центральная симметрия В математике рассматриваются различные виды симметрии
Фигура называется Симметричной относительно точки О Точка О называется центр симметрии если для каждой точки фигуры симметричная ей точка так же принадлежит этой фигуре.
Свернём лист по этой прямой и проткнём его иглой. А В Возьмём лист бумаги и проведём на нём прямую. Развернём лист и увидим на нём две точки, которые находятся на одинаковом расстоянии от линии сгиба.
Если мы проведём через точки А и В прямую АВ, то она будет … перпендикулярна данной прямой а. А В а Такие точки называют симметричными относительно прямой а. Две точки А и В называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АВ и перпендикулярна к нему. Определение
Фигура называется Симметричной относительно прямой а Прямая а называется ось симметрии если для каждой точки фигуры симметричная ей точка так же принадлежит этой фигуре.
Осевая симметрия ещё называется зеркальной… Зеркало
кристаллография (структуры кристаллов) симметрия вокруг нас
Симметрия в алгебре В записи чисел: 202, 31013, Бином Ньютона:
Симметрия в русском языке и литературе Палиндром (от греческого «пали»- назад, «дромос»- бег) - сочетание слов или текста одинаково читаемых в каком-либо порядке. Виды симметрий: симметрия – оборотень (когда слово или предложение читается как слева направо, так и справа налево) необычная симметрия (когда слово читается на одном языке, а наоборот на другом языке) бесконечная симметрия (когда можно вставить бесконечно много слов)
Что такое палиндромы? Палиндромы – это слова или предложения, которые одинаково читаются в обе стороны.
1) Есть мнение, что первая фраза на Земле, произнесённая человеком, была палиндромная. Именно так – Madam Adam 2) Im Мадам, я – Адам Якобы представлялся Еве в райском саду её будущий муж.
2) Говорят, что даже Наполеон увлекался созданием палиндромов и ему приписывается рыцарское признание на английском: Able was I ere I saw Elba Able was I ere I saw Elba Я был силён, пока не увидел Эльбу Я был силён, пока не увидел Эльбу
Имеют ли буквы русского алфавита ось симметрии? Одна ось симметрии Две оси симметрии А И З Ж Е Д Г В Б О Н Л К М П Р С У Ф Х Э Ю Т
В 1961 году, как результат многовековых исследований, посвященных поиску красоты и гармонии окружающей нас природы, появилась наука биосимметрика Примеры симметрий в ботанике:
Примеры симметрий в ботанике: Центральная симметрия Осевая симметрия
Центральная симметрия характерна для цветов и плодов растений. Разрез голубики, черники, вишни и клюквы представляет собой окружность. Окружность имеет центр симметрии.
Симметрия в мире растений
Симметрия в мире животных
Осевая симметрия в животном мире
Центральная симметрия наиболее характерна для животных, ведущих подводный образ жизни.
В 1810 году Д.Дальтон, желая показать своим слушателям как атомы комбинируясь образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием. Молекула воды и водорода имеет плоскость симметрии (прямая вертикальная линия). Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения
Исключительно важную роль в мире живой природы играют молекулы ДНК (дезоксирибонуклеиновая кислота) Это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, построенной по принципу комплементарности
Симметрия кристаллов "Кристалл" - от греческого "Кристаллос" - лед и горный хрусталь. В древности кристаллы горного хрусталя (кварца) считали окаменевшим льдом. Кристаллы так разнообразны и красивы, что можно любоваться ими часами. СИММЕТРИЯ КРИСТАЛЛОВ - закономерность атомного строения, внешней формы и физических свойств кристаллов
Кто из нас зимой не любовался снежинками? Форма снежинок может быть очень разнообразной, но все они обладают симметрией
Симметрия в технике
Продемонстрируем осевую симметрию на примерах наземного и воздушного транспорта, где ось симметрии проходит вдоль направления движения.
Симметрия в орнаментах
"Архитектура - главнейшие имеет три предмета: красоту, спокойствие и прочность здания. К достижению сего служит руководством знание пропорции, перспективы, механики или вообще физики, а всем им общим вождем является рассудок". В. Баженов
Симметрия и музыка «Душа музыки» - ритм – состоит в правильном периодическом повторении частей музыкального произведения. Правильное же повторение – сущность симметрии Г. В. Вульф Гамма до мажор
Математик любит прежде всего симметрию Максвелл Д. Максвелл Д. Красота тесно связана с симметрией Вейль Г. Вейль Г. Симметрия … является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство Вейль Г. Вейль Г. Для человеческого разума симметрия обладает, по - видимому, совершенно особой притягательной силой Фейнман Р. Фейнман Р.
В С D A A1A1 (D 1 ) В1В1 (С1)(С1) A2A2 B2B2
l A1A1 A B1B1 B а) б) l A В (A1)(A1) В 1
l A C B а) б) l A B D C A1A1 B1B1 C1C1 D1D1 С1С1 В1В1 A1A1
A O B C A1A1 B1B1 C1C1
а) С1С1 В1В1 A1A1
Домашнее задание стр ,184,176. Сделать фотоальбом с фотографиями современных и старых архитектурных зданий, где используется симметрия и диссиметрия.