Комбинаторика – раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составляемой по заданным правилам.
Возникновение комбинаторики Еще математикам Древнего Востока была известна формула бинома Ньютона с натуральным показателем. Рождение комбинаторики как раздела математики связано с трудами Б Паскаля и П.Ферма по теории азартных игр. Большой вклад в развитие комбинаторных методов был сделан Г.Лейбницем, Я.Бернулли, Л.Эйлером. В настоящее время комбинаторика используется в кибернетике, дискретной математике, теории планирования и теории информации, архитектуре, дизайне интерьера.
Самый простой метод решения комбинаторных задач – перебор всех возможных вариантов Подсчитать число однобуквенных слов русского языка. Ответ:11 Перечислить виды: 1)треугольников, 2)четырехугольников. Ответ:1)равносторонний, равнобедренный, разносторонний; остроугольный, прямоугольный, тупоугольный. 2) параллелограмм, прямоугольник, ромб, квадрат, трапеция. В магазине продают бейсболки трех цветов: синие, красные и черные. Ваня и Андрей покупают себе по одной. Сколько существует различных вариантов покупки? Ответ:9 вариантов.
Полный перебор может осуществляться с помощью деревьев С помощью цифр 3 и 5 записать все возможные трёхзначные числа (цифры могут повторяться). Ответ: 8 чисел.
Полный перебор может осуществляться с помощью таблиц и графов Встретились пятеро, каждый пожал другому руку. Сколько было рукопожатий? Ответ: 10. С помощью таблицы вариантов перечислить все возможные двухбуквенные коды, в которых используются буквы: x,y,z. Ответ: 9. xyz xxxxyxz yyxyyyz zzxzyzz
Правило произведения При большом количестве имеющихся элементов полный перебор затруднителен. Правило произведения позволяет упростить подсчет числа определенных соединений. Сформулируем это правило. Если существует вариантов выбора первого элемента и для каждого из них имеется вариантов выбора второго элемента, то существует различных пар с выбранными первым и вторым элементами. Задача 1. Сколько различных двузначных чисел можно записать с помощью цифр 0,2,4,6,8? Ответ: 45 = 20.
Обобщение правила произведения Задача 2. В кафе имеются 3 первых блюда, 5 вторых и 2 третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд? Ответ:352 = 30. Задача 3. Пётр решил пойти на новогодний карнавал в костюме мушкетёра. В ателье проката ему предложили на выбор различные по цвету и фасону предметы: 5 пар брюк, 6 камзолов, 3 шляпы, 2 пары сапог. Сколько различных карнавальных костюмов он может составить из этих предметов? Ответ: 5632 = 180.
Основные задачи комбинаторики Основными задачами комбинаторики считаются следующие: составление упорядоченных множеств (образование перестановок); составление подмножеств данного множества (образование сочетаний) составление упорядоченных подмножеств данного множества (образование размещений). Чтобы отличать задачи на подсчёт числа размещений от задач на подсчёт числа сочетаний, определим, важен или нет порядок в следующих выборках: а) судья хоккейного матча и его помощник; б) три ноты в аккорде; в) «Шесть человек останутся убирать класс!» г) две серии для просмотра из многосерийного фильма. Ответ: а)да; б)нет; в)нет; г)да.
Учимся различать виды соединений Перестановки из элементов Сколькими способами можно с помощью букв A,B,C,D обозначить вершины четырехугольника? Меняется только порядок расположения выбранных элементов Сочетания из элементов по элементов У лесника три собаки: Астра, Вега и Граф. На охоту лесник решил пойти с двумя собаками. Перечислите все варианты выбора лесником пары собак. Меняется только состав входящих в комбинацию элементов, порядок их расположения не важен Размещения из элементов по элементов Сколькими способами могут быть распределены I, II и III премии между 15-ю участниками конкурса? Меняется состав входящих в комбинацию элементов и важен порядок их расположения
Перестановки Перестановками из элементов называются соединения, которые состоят из элементов и отличаются одно от другого только порядком их расположения. Permutation (фр.) – перестановка. Задача. Сколькими способами можно расположить в столбик три детали конструктора, различающиеся по цвету? Ответ:6.
Размещения Размещениями из элементов по элементов ( ) называются такие соединения, каждое из которых содержит элементов, взятых из данных разных элементов, и которые отличаются одно от другого либо самими элементами, либо порядком их расположения. Задача 1. Сколькими способами можно изготовить трёхцветный флаг с горизонтальными полосами, если имеется материал 7 различных цветов? Ответ: 210.
Размещения Задача 2. Сколькими способами могут занять I, II, III места 8 участниц финального забега на дистанции 100 м? ( 8 х 7 х 6=336) Ответ: 366. Задача 3. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать? (30 х 29=780) Ответ: 870.
Сочетания Сочетаниями из элементов по элементов ( ) называются такие соединения, каждое из которых содержит элементов, взятых из данных элементов, и которые отличаются друг от друга по крайней мере одним элементом. Задача 4. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде? Ответ: 21.
Сочетания Задача 5. Сколькими способами можно составить букет из трёх цветков, выбирая цветы из девяти имеющихся? Ответ: 84. Задача 6. В классе учатся 16 мальчиков и 12 девочек. Сколькими способами можно выделить 4 мальчиков и 3 девочек для уборки территории? Ответ:
Бином Ньютона Бином Ньютона – это выражение вида Треугольником Паскаля пользуются при возведении бинома в натуральные степени. Примеры.
Проверь себя 1. Сколькими способами 4 вора могут разбежаться на 4 разные стороны? 2. Из колоды в 36 карт выбирают 5 карт и одновременно открывают их. Найдите число всех возможных вариантов выбранных карт. 3. Сколькими способами из класса, где учатся 24 ученика, можно выбрать: а)двух дежурных; б)старосту и помощника старосты? Ответ: а)276; б) «Проказница Мартышка, Осёл, Козёл да косолапый Мишка задумали сыграть квартет». Сколькими способами они могут выбрать каждый для себя по одному инструменту из 10 данных различных инструментов? Ответ:
О пользе комбинаторики или лишних знаний не бывает