Об этом макете: ВНИМАНИЕ! Мелки – это ссылки: Красный – завершает показ слайдов Белый – возвращает в начало Оранжевый – возвращает на шаг назад Зеленый.

Презентация:



Advertisements
Похожие презентации
Выполнил: Студент группы С-215 Маёнов К.А.. Георг Кантор ( ) Профессор математики и философии, основоположник современной теории множеств. «Под.
Advertisements

Лучший способ изучить что-либо - это открыть самому. (Д. Пойа)
Основные понятия теории множеств Самостоятельная работа Арифметические операции Основные термины Свойства арифметических операций.
Множества, операции над ними. «Множество есть многое, мыслимое нами как единое». Основоположник теории множеств немецкий математик Георг Кантор ( )
Методы дискретной математики: теоретико-множественные представления Эмомов А.М.
Глава II. ТЕОРИЯ МНОЖЕСТВ 1. Основные понятия теории множеств Множество – некоторая совокупность объектов, называемых элементами этого множества. Понятие.
Теория множеств. Определение Множество одно из ключевых понятий математики, в частности, теории множеств и логики. Понятие множества является одним из.
Элементы теории множеств Лекция 3. Определение множества Величиной называется все что может быть измерено и выражено числом. Множеством называется совокупность.
Математика Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной Множество. Операции.
Элементы теории множеств. Понятие множества Множество - это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить,
Понятия теории множеств П онятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким.
Лекция 1 Основные понятия ст.преп Касекеева А.Б..
Определение множества Множество – это совокупность однотипных элементов или объектов, объединённых по некоторому признаку. Например, множество книг в.
1 1. Множества Понятие множества. Логические символы Под множеством понимают совокупность определенных и отличных друг от друга объектов, объединенных.
МНОЖЕСТВО ЭЛЕМЕНТ МНОЖЕСТВА СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ ПОДМНОЖЕСТВО ПЕРЕСЕЧЕНИЕ МНОЖЕСТВ ОБЪЕДИНЕНИЕ МНОЖЕСТВ ВЫЧИТАНИЕ МНОЖЕСТВ ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ.
ОТНОШЕНИЯ И ОПЕРАЦИИ НАД МНОЖЕСТВАМИ ДИАГРАММЫ ЭЙЛЕРА – ВЕННА МНОЖЕСТВА.
Множества. Операции над множествами.. «Множество есть многое, мыслимое нами как единое» (Георг Кантор)
2. Элементы теории множеств Понятие множества 900igr.net.
Данная работа подготовлена для учителей математики и информатики. Имеет цель ознакомления учащихся на уроках и факультативных занятиях. Автор: учитель.
Урок 4 Множества. Множество есть многое, мыслимое нами как единое Георг Кантор.
Транксрипт:

Об этом макете: ВНИМАНИЕ! Мелки – это ссылки: Красный – завершает показ слайдов Белый – возвращает в начало Оранжевый – возвращает на шаг назад Зеленый – продвигает на шаг вперед

Множество и его элементы. Подмножество. Операции над множествами.

Понятие множества. Георг Кантор ( ) Профессор математики и философии, основоположник современной теории множеств. «Под множеством мы подразумеваем объединение в целое определённых, различающихся между собой объектов нашего представления или мышления». Георг Кантор

Понятие множества. Основное понятие в математике - понятие множества. Понятие множество относится к первоначальным понятиям, не подлежащим определению. Под множеством подразумевается некоторая совокупность однородных объектов. Предметы ( объекты), составляющие множество, называются элементами.

Обозначение множества Множества обозначаются заглавными буквами латинского алфавита: A, B, C, X и др. Элементы множества обозначаются строчными буквами латинского алфавита : a, b, c, d и др. Запись M = { a, b, c, d } означает, что множество М состоит из элементов a, b, c, d. Є – знак принадлежности. Запись а є М обозначает, что объект а является элементом множества М и читается так: « а принадлежит множеству М »

Численность множества Численность множества- число элементов в данном множестве. Обозначается так : n Записывается так : n (М) = 4 Множества бывают: Конечные множества- состоят из конечного числа элементов, когда можно пересчитать все элементы множества. Бесконечные множества- когда невозможно пересчитать все элементы множества. Пустые множества- множества, не содержащие элементов и обозначают так: Ø. Записывают так: n (A)=0 ; A= Ø Пустое множество является подмножеством любого множества.

Виды множеств: Дискретные множества(прерывные)- имеют отдельные элементы. Путём счёта распознаются. Непрерывные множества- нет отдельных элементов. Распознаются путём измерения. Конечные множества- состоят из конечного числа элементов, когда можно пересчитать все элементы множества. Бесконечные множества- когда невозможно пересчитать все элементы множества. Упорядочные множества. Элемент из множества предшествует или следует за другим. Множество натуральных чисел, расположенных в виде натурального ряда. Неупорядочные множества. Любое неупорядоченное множество можно упорядочить.

Способы задания множеств Перечислением элементов (подходит для конечных множеств). Указать характеристическое свойство множества, т.е. то свойство, которым обладают все элементы данного множества. С помощью изображения : - На луче - В виде графика С помощью кругов Эйлера. В основном используется при выполнении действий с множествами или демонстрации их отношений.

Подмножество Если любой элемент множества В принадлежит множеству А, то множество В называется подмножеством множества А. - Знак включения. Запись В А означает, что множество В является подмножеством множества А.

Виды подмножеств Собственное подмножество. Множество В называется собственным подмножеством множества А, если выполняются условия: ВØ, ВА. Не собственные подмножества. Множество В называется не собственным подмножеством множества А, если выполняются условия: ВØ, В=А. Пустое множество является подмножеством любого множества. Любое множество является подмножеством самого себя.

АВ А=В Равенства множеств Множества равны, если они состоят из одних и тех же элементов. Два множества являются равными, если каждый из них является подмножеством другого. В этом случае пишут: А=В

Операции над множествами Пересечение множеств. Объединение множеств. Разность множеств. Дополнение множества.

Объединение множеств Объединением множеств А и В называется множество всех объектов, являющихся элементами множества А или множества В. U - знак объединения. А U В читается так: «Объединение множества А и множества В».

Пересечение множеств Пересечением множеств А и В называется множество, содержащее только те элементы, которые одновременно принадлежат и множеству А и множеству В. -знак пересечения, соответствует союзу «и». А В читается так: «Пересечение множеств А и В»

Решение упражнений Устно: Письменно: 4.1; 4.4; 4.5; ; 4.10 (1,2); 4.14; 4.16

Решение упражнений Устно: Письменно: Пр-р 1, 2, 3(стр.32), 5.1; 5.4; 5.8; ; 5.18; 5.19; 5.21; 5.24; 5.28; 5.30(1)

Домашнее задание §2, п.4,5; 4.9; 4.11; 5.14; 5.20; 5.10; 5.23(1,2); 5.30(2).