Пифагор – самая загадочная личность, человек-символ, философ, пророк. Пифагор – едва ли не самый популярный ученый за всю историю человечества. Ни одно.

Презентация:



Advertisements
Похожие презентации
Руководитель: Галимова Р.Р. Выполнил: ученик 8 кл Касимов Б. В. МОУ татарская гимназия 1 п.г.т. Кукмор.
Advertisements

Пифагор – самая загадочная личность, человек-символ, философ, пророк. Пифагор – едва ли не самый популярный ученый за всю историю человечества. Ни одно.
Пифагор – самая загадочная личность, человек-символ, философ, пророк. Пифагор – едва ли не самый популярный ученый за всю историю человечества. Ни одно.
Пифагор – древнегреческий ученый, живший в VI веке до нашей эры. Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной.
Исследовательская работа по геометрии на тему: Презентацию выполнила: Медведева Татьяна Научный руководитель: Смотрина В. П. Государственное общеобразовательное.
Урок геометрии в 8 классе Провела: Занкина О. И. учитель математики Папулевской оош Ичалковского района.
«Пребудет вечной истина, Как скоро её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век». Шамиссо.
Древнегреческий философ и математик ( VI в до н.э.)- Пифагор – едва ли не самый популярный ученый за всю историю человечества. Вокруг личности Пифагора.
Выяснить, фамилия какого ученого зашифрована в математических примерах. Г 0,5625 *2,4 = 1,35 Ф 0,6156:1,9= 0,324 И 121,4-29,7= 91,7 П 132,96+21,4 =154,36.
Теорема Пифагора Подготовила учитель математики МОУ СОШ 2 п. Локомотивный Басарыгина А.А.
Биография Пифагора Пифагор - не только самый популярный ученый, но и самая загадочная личность. Подлинную картину его жизни и достижений восстановить.
Способы доказательства теорема Пифагора Подготовила презентацию Ученица 8 «А» класса МБОУ СОШ 19 Авакян Нелля Проверила: Куликова Е.И.
Подготовила ученица 8 А класса Синегубова София. «Геометрия владеет двумя сокровищами: одно из них- это теорема Пифагора» Иоганн Кеплер.
Отец Пифагора, Мнесарх, был достаточно богатым человеком, чтобы дать сыну хорошее воспитание. Когда отец Пифагора, был в Дельфах по своим торговым делам,
1.Найдите площадь квадрата со стороной 3 см; 1,2 мм; 5\7 м;. 2. Найдите площадь прямоугольного треугольника с катетами 3 см и 4 см; 2,2 м и 5 см;
Теорема Пифагора Урок геометрии в 8 классе Батяева М.С.
Пифагор – древнегреческий ученый, живший в VI веке до нашей эры. Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной.
Историческая справка Существует замечательное соотношение между гипотенузой и катетами прямоугольного треугольника, справедливость которого была доказана.
ТЕМА: Теорема Пифагора.. Цель урока: Изучить теорему Пифагора и научиться применять ее при решении задач. Пифагор древнегреческий ученый VI в. до н.э.
Пифагор легенда: фигура Пифагора была окружена множеством легенд: его считали перевоплощенным богом Аполлоном; полагали, что у него было золотое ребро;
Транксрипт:

Пифагор – самая загадочная личность, человек-символ, философ, пророк. Пифагор – едва ли не самый популярный ученый за всю историю человечества. Ни одно имя ученого не повторяется так часто.

Великий ученый Пифагор родился около 570 г. до н.э. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Когда отец Пифагора был в Дельфах по своим торговым делам, он и его жена Партенис решили спросить у Дельфийского оракула, будет ли Судьба благоприятствовать им во время обратного путешествия в Сирию. Пифия (прорицательница Аполлона), сидя на золотом триоде над сияющим отверстием оракула, не ответила на их вопрос, но сказала Мнесарху, что его жена носит в себе дитя и что у них родится сын, который превзойдет всех людей в красоте и мудрости и который много потрудится в жизни на благо человечества. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности.

Теорема Пифагора – важнейшее утверждение геометрии. Ее открытие приписывают древнегреческому философу и математику Пифагору Самосскому (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий ещё более древних манускриптов) показало, что знаменитая теорема была известна задолго до Пифагора, возможно, за несколько тысячелетий до него. Заслуга же Пифагора состояла в том, что учёный первым открыл доказательство этой теоремы. Открытие теоремы Пифагором окружено множеством красивых легенд. Со времён Пифагора появилось несколько сотен доказательств (более 350) его знаменитой теоремы, так что она даже попала в Книгу рекордов Гиннеса.

Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем : Катеты в квадрат возводим, Сумму степеней находим И таким простым путем К результату мы придем.

ТЕОРЕМА ПИФАГОРА И СПОСОБЫ ЕЁ ДОКАЗАТЕЛЬСТВА. СПОСОБЫ ЕЁ ДОКАЗАТЕЛЬСТВА. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Различные способы доказательства теоремы Пифагора Простейшее доказательство На рисунке дан простейший равнобедренный прямоугольный треугольник АВС (закрашен серым цветом, АВ и ВС -катеты). Если квадраты отложить в общую часть полуплоскостей с границами АВ и ВС, то сумма числовых значений площадей квадратов, построенных на катетах, равна 4 S ABC (квадраты совпали). Но и площадь квадрата, построенного на гипотенузе, тоже равна 4 S ABC Если же квадраты отложить на сторонах во внешнюю область, то и в этом случае 2+2=4. Теорема доказана. B C A

В зданиях романского и готического стиля верхние части окон расчленяются каменными рёбрами, которые не только играют роль орнамента, но и способствуют прочности окон. На рисунке представлен простой пример такого окна в готическом стиле. Способ построения его весьма прост: из рисунка легко найти центры шести дуг окружностей, радиусы которых равны. А прямой угол при геодезических измерениях отмечают на местности колышками с помощью верёвки. Если её разметить углами на местности размером 3, 4 и 5 метров и образовать из верёвки прямоугольный треугольник с соответственными длинами сторон, то он будет прямоугольным. Прямоугольные треугольники с целочисленными длинами сторон называются пифагоровыми треугольниками.

Первая тайна заключается в таком множестве названий: «теорема бабочки», «т. невесты», «т. нимфы», « т. 100 быков», «бегство убогих», «мост ослов», «ветряная мельница». Думаю, что не найти другой теоремы, которая имела бы столько всевозможных названий!

Вторая тайна – точно неустановленное количество доказательств знаменитой теоремы Пифагора Самосского. Большинство людей старшего поколения согласны с существованием 250 доказательств, хотя из дополнительных источников известно, что существует более 350 доказательств этой теоремы, поэтому она даже попала в Книгу рекордов Гиннеса! Но, конечно же, принципиально различных идей в этих доказательствах используется сравнительно немного.

Третья тайна – это то, что теорема Пифагора является сегодня символом математики. Четвёртая тайна – теорема Пифагора представляет нам богатейший материал для обобщения – важнейшего вида мыслительной деятельности, основы теоретического мышления, которым в совершенстве владеют многие учёные. Здесь можно добавить, что от теоремы Пифагора можно перейти к другим теоремам

Пятая тайна заключается в том, что некоторые исследователи приписывают Пифагору доказательство, которое Евклид приводил в первой книге своих «Начал». С другой стороны, Прокл (математик V в.) утверждал, что доказательство в «Началах» принадлежало самому Евклиду. Но всё-таки сегодня способ доказательства Пифагора остаётся неизвестным.

Шестая тайна – легенды о самом Пифагоре, человеке, который первым доказал эту теорему. Существует легенда, что когда Пифагор Самосский доказал свою теорему, он отблагодарил богов, принеся в жертву 100 быков. Также о гипнотических способностях учёного ходили легенды: будто он одним своим взглядом мог менять направление полёта птиц. А ещё рассказывали, что этого удивительного человека одновременно видели в разных городах, между которыми было несколько дней пути. И что ему якобы принадлежало «колесо фортуны», вращая которое, он не только предсказывал будущее, но и вмешивался, если это было необходимо, в ход событий.

Взрослые: 6 из 10 знают формулировку теоремы, 8 из 10 могут записать формулу, 5 из 10 могут решить задачу с применением теоремы. Учащиеся 8 – 11 классов (15 учащихся): 10 знают формулировку теоремы, 12 могут записать формулу, 7 могут решить задачу с применением теоремы Пифагора.