Лекция 14. ПОВЕРХНОСТНАЯ ИОНИЗАЦИЯ Поверхностная ионизация. Формула Саха-Ленгмюра. Температурная зависимость плотности тока положительной ионизации. Термодинамичсекий.

Презентация:



Advertisements
Похожие презентации
Лекция 9. ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ. Термоэлектронная эмиссия. Статистический и термодинамические вывод формулы плотности тока термоэлектронной эмиссии.
Advertisements

Лекция 6. ВЛИЯНИЕ ПРОСТРАНСТВЕННОГО ЗАРЯДА ЭЛЕКТРОННЫХ И ИОННЫХ ПУЧКОВ. Ограничение тока пространственным зарядом в диоде. Формула Ленгмюра и Богуславского.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, простая квантовая модель поведения валентных электронов.
Туннельный эффект. Квантовый осциллятор Лекция 3 Весна 2012 г. Лектор Чернышев А.П.
Трансформация потенциального барьера вблизи поверхности металла под действием электрического поля: а – без поля, б – в поле (F), величиной 10 8 В/см, в.
Распределение Больцмана. Барометрическая формула..
Прибс Роман класс 10-11а Лицей 1580 при МГТУ им. Н.Э. Баумана Ионизация газа. Несамостоятельный газовый разряд.
Лекция 7 Молекулярная физика и термодинамика. Тепловое равновесие. Температура. Молекулярная физика и термодинамика изучают свойства и поведение макроскопических.
Поверхностная сверхпроводимость. Контактные явления. Тонкие пленки Размерные эффекты.
ВНУТРЕННЯЯ ЭНЕРГИЯ ИДЕАЛЬНОГО ГАЗА. ИЗМЕНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ.
Плазма Что такое плазма Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.
ПРОВОДНИКИ Напряженность и потенциал поля в проводнике Поле вблизи проводника Конденсаторы Энергия электрического поля.
Сегодня: четверг, 20 февраля 2014 г. ДАВЛЕНИЕ СВЕТА Рассмотренные нами явления интерференции, дифракции, поляризации объясняются с точки зрения волновой.
Зарипова И.Д. учитель физики МОУ «СОШ 51» г.Магнитогорска.
Металлы, проводники и диэлектрики 12 класс. Ионная связь Рассмотрим образование ионной связи на примере соединения хлорида натрия Na + Cl Na + +Cl + Na.
Лекция 12 КОЛЕБАНИЯ И ВОЛНЫ В ПЛАЗМЕ Ввиду наличия заряженной и нейтральной компонент плазма обладает большим числом колебаний и волн, некоторые из которых.
Отступление 1. (Короткий экскурс в физику твердого тела) Некоторые представления физики твердого тела Лекции по дисциплине «Основы анализа поверхности.
Этот тип связи образуется при взаимодействии атомов элементов, электроотрицательности которых резко отличаются. При этом происходит почти полное смещение.
Разрушение сверхпроводимости магнитным полем. Термодинамический потенциал сверхпроводника. Сверхпроводники первого и второго рода. Неоднородное проникновение.
Транксрипт:

Лекция 14. ПОВЕРХНОСТНАЯ ИОНИЗАЦИЯ Поверхностная ионизация. Формула Саха-Ленгмюра. Температурная зависимость плотности тока положительной ионизации. Термодинамичсекий вывод формулы Саха-Ленгмюра. Отрицательная поверхностная ионизация. При попадании потока атомов или молекул на поверхность нагретого до высокой температуры металла некоторая их часть покинет поверхность в виде тех же нейтральных частиц, но будет некоторое количество покидающих поверхность в виде положительных или отрицательных ионов. Явление ионизации на поверхности раскаленного металла получило название поверхностной ионизации – положительной и отрицательной соответственно. Впервые положительную поверхностную ионизацию атомов на вольфраме наблюдали в 1923 г. Ленгмюр и Кингдон. Поверхностная ионизация отличается от неравновесных процессов эмиссии ионов с поверхности, вызванных воздействием быстрых нейтральных частиц (нейтрал-ионнная эмиссия), электронов (электрон-ионная эмиссия), фотонов (фотодесорбция ионов) тем, что адсорбированные на поверхности из газовой фазы атомы (адатомы) приходят к термическому равновесию с металлом, так что испарение происходит за счет теплового возбуждения.

Поверхностная ионизация. Поверхностная ионизация характеризуется двумя параметрами: - степень ионизации - коэффициент ионизации где и - плотности потока испаряющихся частиц в виде ионов и атомов соответственно, в стационаре, где - плотность потока падающих частиц. Из кинетической теории газов Степень поверхностной ионизации определяется формулой Саха-Ленгмюра: где - отношение статистических весов ионного и атомного состояния ионизующихся частиц, - работа выхода металла, на котором происходит ионизация атомов, - потенциал ионизации.

Температурная зависимость плотности тока положительной ионизации С целью проверки формулы Саха-Ленгмюра многими исследователями экспериментально изучалась температурная зависимость плотности ионного тока. Если и, это соответствует легко ионизуемым элементам (например, на ). Если и (например, К на W ), при росте T уменьшается, следовательно, и При (например, Na на W ),,,. С ростом T.

Термодинамичсекий вывод формулы Саха-Ленгмюра. Рассмотрим систему газ-металл в равновесии, т.е. потоки частиц (ионов, атомов, электронов) на стенку и со стенки равны, и температура газа и металла равна. Запишем равенство потоков электронов. Плотность приходящего потока электронов, где - средняя скорость электронов в газе, - средний коэффициент отражения от стенки, - плотность электронов. Плотность уходящего потока электронов равна плотности тока термоэмиссии: Где - универсальная постоянная Ричардсона, потому что эмиссия частиц возникает не в результате действия падающих на стенку частиц, а в результате теплового возбуждения на поверхности разогретого металла. Приравниваем получим Используя известное в термодинамике выражение для константы равновесия процесса

Термодинамичсекий вывод формулы Саха-Ленгмюра. Получим : Учитывая равенство масс и средних скоростей атомов и ионов, получим : Данное соотношение выполняется только в непосредственной близи около поверхности, при удалении от поверхности на расстояние большее нескольких радиусов Дебая устанавливается равенство Экспериментальная проверка этих зависимостей подтвердила верность соотношения Саха-Ленгмюра.

Статистический вывод формулы Саха-Ленгмюра. Согласно теории Зоммерфельда электроны в металле находятся в потенциальной яме глубины, валентный электрон адсорбированного атома (адатома) так же находится в потенциальной яме. адатом Ширина потенциального барьера на границе металл-адатом конечного размера, и электроны металла и адатомов за счет туннельного эффекта могут преодолевать его, при этом адатом может находиться на поверхности не только в нейтральном состоянии, но и в состоянии частичной ионизации. Адатом и металл образуют единую систему, их электроны принадлежат всей системе в целом, так что электронные облака распределяются как в объеме металла, так и в объеме адатома. Таким образом, энергетический уровень валентно электрона расплывается и изменяется, так что энергия наиболее вероятного нахождения электронов в адатоме отличается от и лежит немного выше.

Статистический вывод формулы Саха-Ленгмюра. Поэтому если то адатом заряжен отрицательно, если - положительно. Расширение и изменение уровня валентного электрона при приближении атома к поверхности происходит только если он находится на уровне зоны проводимости металла. Если он расположен ниже дна зоны проводимости, то расширения не происходит ион остается дискретным на любом расстоянии от поверхности, при этом электрон будет принадлежать только адатому, и адатом будет нейтральным. При удалении адатома от поверхности ширина потенциального барьера увеличивается, обмен электронами между металлом и адатомом затрудняется, электроны металла стягиваются внутрь металла, валентный электрон адатома локализуется на дискретном уровне. Вероятность обмена электронами практически прекращается на некотором расстоянии. Энергия локализации электрона, вероятность нахождения электрона на уровне по статистике Ферми : Вероятность того, что этот уровнеь не занят, т.е. вероятность того, что на расстоянии будет находиться ион, равна

Статистический вывод формулы Саха-Ленгмюра. Следовательно, отношение этих вероятностей дает отношение числа ионов к числу нейтралов на расстоянии : В случае наличия сильного внешнего электрического поля, вытягивающего ионы от поверхности эмиттера, степень ионизации растет в соответствии с уменьшением работы испарения иона с поверхности металла. Если провести те же рассуждения, что ив случае эффекта Шоттки для термоэлектронов, то это уменьшение работы испарения равно поэтому зависимость степени ионизации от электрического поля имеет вид:

Отрицательная поверхностная ионизация Некоторые атомы могут присоединять к себе электроны, превращаясь в отрицательный ион, на разрушение которого (удалить электрон) требуется работа, называемая сродством электрона к атому. Можно теоретически показать на примере водорода, что отрицательный ион энергетически устойчив. Действительно, при испарении атома с поверхности нагретого металла на некотором критическом расстоянии, так же, как и в случае положительной поверхностной ионизации, возникает локализованный уровень электрона в системе металл-адатом. При дальнейшем удалении адатома когда обмен электронами в системе металл-адатом прекращается, если этот уровень будет занят электронов, то с поверхности эмитируется отрицательный ион, если нет, то атом. Следовательно, для степени отрицательной ионизации мы получим формулу, аналогичную формуле Саха-Ленгмюра:

Отрицательная поверхностная ионизация Как правило, для всех атомов величина Экспериментальная проверка этой зависимости в сравнении с положительным поверхностным ионным током затруднена тем, что помимо отрицательных ионов на анод приходят термоэлектроны, и даже в гораздо больших количествах. Лишь применение масс- сепараторов позволяет разделить эти потоки и одновременно измерить плотности тока ионов и термоэлектронов. Проведенные эксперименты подтвердили данную зависимость. Измерение угла наклона экспериментальной зависимости дает возможность экспериментального определения S.