Свойства и графики тригонометрических функций Демонстрационный материал 10 класс.

Презентация:



Advertisements
Похожие презентации
Свойства и графики тригонометрических функций Демонстрационный материал 11 класс Все права защищены. Copyright 2008.
Advertisements

Тригонометрические функции Свойства и графики функций.
Логарифмическая функция, ее свойства и график Демонстрационный материал 11 класс.
Показательная функция, ее свойства и график Демонстрационный материал 11 класс.
Четные и нечетные функции. Периодичность функций Демонстрационный материал 10 класс.
Степенная функция с натуральным показателем Демонстрационный материал 9 класс.
Обратные тригонометрические функции Демонстрационный материал 11 класс Все права защищены. Copyright с.
Логарифмическая функция, ее свойства и график Демонстрационный материал 10 класс.
Показательная функция, ее свойства и график Демонстрационный материал 10 класс.
Свойства функций Демонстрационный материал 11 класс Все права защищены. Copyright с Copyright с.
Свойства квадратичной функции Демонстрационный материал 8 класс.
Свойства квадратичной функции Задания для устного счета Упражнение 7 9 класс.
Возрастание и убывание функций. Экстремумы Демонстрационный материал 10 класс.
Функции и их графики Задание для устного счета Упражнение класс.
Обратные тригонометрические функции Графики и свойства.
Определение первообразной Демонстрационный материал 11 класс.
Свойства квадратичной функции Демонстрационный материал 9 класс Все права защищены. Copyright с Copyright.
Применения производной Демонстрационный материал 11 класс.
Основные элементарные функции. Степенная функция у = х p Свойства и графики степенных функций вида у = х p существенно зависят от показателя степени р.
Узнавание функции по графику ее производной Задание для устного счета Упражнение 6 11 класс.
Транксрипт:

Свойства и графики тригонометрических функций Демонстрационный материал 10 класс

Функция Область определения функции – все действительные числа. Область значений - у [-1; 1]. Данная функция – нечетная, график ее симметричен относительно начала координат. Функция – периодическая. Наименьший положительный период равен 2π. 1 π 2π2π 0 -π-π -2π

Функция -π-π - - -π-π у х π0-π-π у х π0-π-π - 1. Область определения данной функции – все действительные числа, кроме чисел 2. Область значений функции – все действительные числа. 3. Функция возрастает на интервалах 4. Функция нечетная, график ее симметричен относительно начала координат. 5. Функция периодическая, ее наименьший положительный период равен π.

Функция 1. Область определения данной функции – все действительные числа, кроме чисел х= πk, k Z. 2. Область значений функции – все действительные числа. 3. Функция убывает на интервалах 4. Функция нечетная, график ее симметричен относительно начала координат. 5. Функция периодическая, ее наименьший положительный период равен π. - 1 у х π0-π-π -

Copyright © 2008 by Zykin Valerij Все права защищены. Copyright © 2008 by