Л АБОРАТОРНАЯ РАБОТА 3 Тема: Интерполирование функций
1. П ОСТАНОВКА ЗАДАЧИ ИНТЕРПОЛИРОВАНИЯ Пусть на отрезке в некоторых попарно различных точках известны значения функции. Задача интерполирования функции состоит в том, чтобы найти значение,,, если известны узлы интерполирования и значения функции в этих узлах. Решение задачи интерполирования: - выбирается система функций ; - строится обобщенный многочлен ; (1) - коэффициенты задаются таким образом, чтобы в узлах интерполирования значения обобщенного многочлена совпадали со значениями данной функции : (2) Обобщенный многочлен, обладающий данным свойством, называется обобщенным интерполяционным многочленом. 2
Теорема 1. Для того чтобы для любой функции, определенной на отрезке, и любого набора узлов, при,, существовал и был единственным обобщенный интерполяционный многочлен, (3) необходимо и достаточно, чтобы система функций, являлась системой Чебышева на. Определение. Совокупность функций называется системой Чебышева на отрезке, если любой обобщенный многочлен по этой системе, у которого хотя бы один из коэффициентов отличен от нуля, имеет на не более корней. На практике чаще всего используются следующие системы: 1) – алгебраическое интерполирование; 2) – тригонометрическое; 3) – экспоненциальное, где некоторая числовая последовательность попарно различных действительных чисел. 3
2. Л ИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ Заданы точки, – узлы интерполяции и требуется найти функцию, которая проходит через эти точки (рис. 1), то есть, (4) где – интерполирующая функция или интерполянт. 4
При линейной интерполяции интерполирующая функция имеет вид : (5) где – базисные функции. Из условия (4) и выражение (5), получаем систему уравнений (6) Единственное решение системы (6) существует при двух условиях: 1) число точек, равно числу коэффициентов ; 2) система уравнений (6) должна быть невырожденной, т.е. определитель системы. 5
В случае линейной полиномиальной интерполяции базисные функции имеют вид:. Интерполирующая функция при этом имеет вид полинома степени и, следовательно, система (6) примет вид (7) В матричной форме систему (7) можно переписать как, где – матрица Ван дер Монда; 6
Решением системы (7) будет вектор коэффициентов полинома. Так как определитель матрицы Ван дер Монда всегда отличен от нуля (при ), то решение системы (7) – единственное:. Определить погрешность приближения функции можно по формуле (8) 7
3. И НТЕРПОЛЯЦИОННАЯ ФОРМУЛА Л АГРАНЖА Интерполяционный многочлен степени не выше по системе алгебраических многочленов можно задать по формуле Лагранжа (9) Разность называется погрешностью интерполирования или остаточным членом интерполирования. Интерполяционный многочлен в форме Лагранжа (9) для практических вычислений неудобен. Поэтому формулу (9) часто приводят к «барицентрическому» виду: (10) где 8
З АДАНИЕ 3 Тема: Интерполирование функций 1. Вычислить значение заданной функции в узлах интерполяции на отрезке. Построить графическое изображение массива. 2. Построить линейный интерполяционный полином. Найти его значение в узлах, соответствующих полушагу таблицы. На одном графике построить функции и. Вычислить погрешность. 3. Построить интерполяционный многочлен Ньютона по формуле (10) и с его помощью найти значение функции в узлах, соответствующих полушагу таблицы. На одном графике построить функции и. Вычислить погрешность. 4. Сравнить погрешности интерполяции. Выбрать лучшее приближение. 9