Иррациональные числа в древности и средние века..

Презентация:



Advertisements
Похожие презентации
Автор проекта: Негрова Ольга, Ученица 9 класса МОУ Стрелецкой сош. Руководитель: Пронина Т.Н., учитель математики.
Advertisements

Устный журнал. 1, 2, 3, 4, 5, 6, … Итак, появились числа 1, 2, 3, 4, 5, 6, …, которыми можно выразить количество коров в стаде, деревьев в саду, волос.
Тема урока: Иррациональные уравнения Цель: Познакомиться с понятием «иррациональные уравнения» и некоторыми методами их решений. Развивать умение выделять.
Презентация к уроку по алгебре (9 класс) по теме: Арифметическая прогрессия
Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью.
Иррациональные числа «Холодные числа, внешне сухие формулы математики полны внутренней красоты и жара сконцентрированной в них мысли.» А.Александров.
проект подготовила Шкрабо Светлана 5Е класс 1) Как появились дроби в разных странах 2) Как назывались дроби в Древней Руси.
История возникновения обыкновенных дробей
Элективный курс по алгебре в 9 классе «Комплексные числа» Элективный курс по алгебре в 9 классе «Комплексные числа»
Автор работы: ученик 8 класса Лапшин Виталий. ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ОБЪЕКТ ИССЛЕДОВАНИЯ: история математики ПРЕДМЕТ ИССЛЕДОВАНИЯ: появление.
Элективный курс по алгебре в 9 классе «Комплексные числа» г. Пермь МОУ «Гимназия 5» учитель математики высшая категория Ненашева Татьяна Васильевна стаж.
Комплексные числа История возникновения комплексных чисел.
Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением.
Выполнили Бойцева К.Волкова Н. Учитель: Голубова Л.П.
АлгебраАлгебра. Что же такое Алгебра? Алгебра есть не что иное, как математический язык, приспособленный для обозначения отношений между количествами.
Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять.
Первыми, кто дал некоторые правила действий с отрицательными числами, были китайские математики. Во II ст. до н. э. китайский ученый Чжан Цань написал.
Краткий обзор развитии тригонометрии. Тригонометрия возникла и развивалась в древности как одна из разделов астрономии, отвечающий практическим нуждам.
Презентацию подготовила: учитель математики МКОУ СОШ с.Красавка Бондарцова В.А.
история квадратных уравнений
Транксрипт:

Иррациональные числа в древности и средние века.

Чисел рациональных из множества Q не хватает для того, чтобы сделать числовую прямую сплошной, или, как говорят математики, непрерывной. Нам нужны новые числа. Эти числа принято называть иррациональными. Раньше считали, что существуют только натуральные числа и числа, представляющие собой их отношение, т.е. обыкновенные дроби. Иррациональные – значит не выражающиеся в виде такого отношения, не рациональные. Чисел рациональных из множества Q не хватает для того, чтобы сделать числовую прямую сплошной, или, как говорят математики, непрерывной. Нам нужны новые числа. Эти числа принято называть иррациональными. Раньше считали, что существуют только натуральные числа и числа, представляющие собой их отношение, т.е. обыкновенные дроби. Иррациональные – значит не выражающиеся в виде такого отношения, не рациональные.

Сам факт существования таких удивительных чисел долго не укладывался в сознании учёных в древности, убеждённых в том, что всё в природе, все её явления и законы описываются законами, представляющими различные отношения целых чисел. А тут оказалось, что даже длина диагонали квадрата таким отношением не описывается. Существует легенда, будто этот факт настолько потряс Пифагора и его учеников, что они решили скрыть его от всех. Сам факт существования таких удивительных чисел долго не укладывался в сознании учёных в древности, убеждённых в том, что всё в природе, все её явления и законы описываются законами, представляющими различные отношения целых чисел. А тут оказалось, что даже длина диагонали квадрата таким отношением не описывается. Существует легенда, будто этот факт настолько потряс Пифагора и его учеников, что они решили скрыть его от всех.

Но, как это часто бывает со всякого рода тайнами, нашёлся некто Гиппас, который всё же не удержался и, как мы сказали бы теперь, разгласил запретную информацию. Легенда утверждает, что боги наказали его – он утонул во время кораблекрушения. Но, как это часто бывает со всякого рода тайнами, нашёлся некто Гиппас, который всё же не удержался и, как мы сказали бы теперь, разгласил запретную информацию. Легенда утверждает, что боги наказали его – он утонул во время кораблекрушения.

Древнегреческие математики классической эпохи не пользовались другими числами, кроме рациональных. В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически. Древнегреческие математики классической эпохи не пользовались другими числами, кроме рациональных. В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например корень из неквадратного числа, «алогос» - невыразимая словами; арабы перевели этот термин, означающий так же «немой», словом «асам», а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой. Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например корень из неквадратного числа, «алогос» - невыразимая словами; арабы перевели этот термин, означающий так же «немой», словом «асам», а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой.

В Европе термин surdus – глухой впервые встречается в середине XII в. В Европе термин surdus – глухой впервые встречается в середине XII в. у Герарда Кремонского, затем у итальянского математика Леонардо Фибоначчи и других европейских математиков вплоть до у Герарда Кремонского, затем у итальянского математика Леонардо Фибоначчи и других европейских математиков вплоть до XVIII в. Правда, уже в XVI в. отдельные учёные, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин, считали понятие иррационального числа равноправным с понятием рационального числа. XVIII в. Правда, уже в XVI в. отдельные учёные, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин, считали понятие иррационального числа равноправным с понятием рационального числа.

Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью». Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью».

Ещё до Бомбелли и Стевина многие учёные стран Ближнего и Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. Ещё до Бомбелли и Стевина многие учёные стран Ближнего и Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В этом же направлении много было сделано крупнейшим математиком XIII в. ат – Туси. В этом же направлении много было сделано крупнейшим математиком XIII в. ат – Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами Древнего Вавилона широко пользовались шестидесятеричными дробями. По аналогии с шестидесятеричными дробями самаркандский учёный XV в. ал – Каши ввёл десятичные дроби, которыми он пользовался и для повышения точности извлечения корней. Независимо от него в 1585 году десятичные дроби в Европе ввёл Симон Стевин. Таким образом, уже в XVI в. зародилась идея о том, что естественным формальным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби. Математики и астрономы Ближнего и Среднего Востока вслед за астрономами Древнего Вавилона широко пользовались шестидесятеричными дробями. По аналогии с шестидесятеричными дробями самаркандский учёный XV в. ал – Каши ввёл десятичные дроби, которыми он пользовался и для повышения точности извлечения корней. Независимо от него в 1585 году десятичные дроби в Европе ввёл Симон Стевин. Таким образом, уже в XVI в. зародилась идея о том, что естественным формальным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби.

Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков и необходимостью расширения рационального числа. Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков и необходимостью расширения рационального числа. В современных учебниках основа определения иррационального числа опирается на идеи ал – Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснование свойств действительных чисел и полная теория их была разработана лишь в XVIIII в. В современных учебниках основа определения иррационального числа опирается на идеи ал – Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснование свойств действительных чисел и полная теория их была разработана лишь в XVIIII в.

Презентацию выполнил: Презентацию выполнил: Рябов Артём Рябов Артём Ученик 11 Б класса Ученик 11 Б класса Руководитель: Рябова Руководитель: Рябова Лилия Геннадьевна Лилия Геннадьевна МОУ «Быстроистокская общеобразовательная средняя (полная) школа» МОУ «Быстроистокская общеобразовательная средняя (полная) школа»