3. Основы логической алгебры. Составление цифровых электронных схем. Рассмотрим еще раз таблицы истинности для схем «И», «ИЛИ», «НЕ». X 1 X 2 Y 0 1 0 1.

Презентация:



Advertisements
Похожие презентации
7.3. Основы логической алгебры. Составление цифровых электронных схем. Рассмотрим еще раз таблицы истинности для схем «И», «ИЛИ», «НЕ». X 1 X 2 Y
Advertisements

ЕГЭ Урок 9 Алгебра логики. Логическое умножение (конъюнкция) «И» A B, A&B A B истинно тогда и только тогда, когда оба высказывания A и B истинны. A B.
Логические законы и правила преобразования логических выражений.
Логические законы и правила преобразования логических выражений.
ОСНОВНЫЕ ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ. Применение законов логики позволяет сокращать количество переменных в логических выражениях. Сокращенные с помощью законов.
Логические законы Логические законы и правила преобразования логических выражений.
Логические основы работы ЭВМ 1.Высказывания, логические функции и алгебра логики 2. Описание логических функций 3. Логические выражения 4. Преобразование.
Законы Алгебры логики В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (
Логические законы и правила преобразования логических выражений.
С помощью логических переменных и символов логических операций любое высказывание можно заменить логическим выражением ( формулой). Алгебра логики – это.
Функциональные устройства комбинационного типа. Модуль 2. Введение в цифровую схемотехнику.
ДИКТАНТ 1. Напишите таблицу истинности для операции конъюнкция 2. Напишите таблицу истинности для операции дизъюнкция 3. Напишите таблицу истинности для.
Методика изучения темы «Представление информации». Язык логики и его место в базовом курсе информатики. Выполнила: Студентка 5-го курса Килина Е.П. группа.
Алгебра логики. Логика Логика – это наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и.
Логические законы и правила преобразования логических выражений Урок 5-6.
Законы логики Законы логики отражают важные закономерности логического мышления. Законы записываются в виде формул, которые позволяют проводить эквивалентные.
Построение логических выражений по таблице истинности Курсовая работа Евстафьева Алексея, гимн.5, 2002 г.
1 Лабораторная работа 1 ПОСТРОЕНИЕ КОМБИНАЦИОННЫХ СХЕМ НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ Министерство образования Российской Федерации Казанский государственный.
Тема: "Законы булевой алгебры и упрощение логических выражений" Учитель информатики ГБОУ СОШ 1226 Качулина Ю. А г. Москва.
Логические основы построения компьютера. Основные понятия алгебры логики Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые.
Транксрипт:

3. Основы логической алгебры. Составление цифровых электронных схем. Рассмотрим еще раз таблицы истинности для схем «И», «ИЛИ», «НЕ». X 1 X 2 Y X 1 X 2 Y XY «И»«ИЛИ»«НЕ» Поставим в соответствие этим операциям математические действия. 0 · 0 = 0 0 · 1 = 0 1 · 0 = 0 1 · 1 = = = = = 1 (логическое умножение). Конъюнкция (логическое сложение). Дизъюнкция Инверсия («Не икс»)

3. Основы логической алгебры. Составление цифровых электронных схем. В логической алгебре (булевой алгебре) каждая величина может иметь только два значения: 0 и 1. Здесь справедливо равенство: = 1. Логическая алгебра дает возможность составлять электронные схемы согласно алгебраическим выражениям. Основные соотношения логической алгебры. (3.1) ( Доказать!)

3. Основы логической алгебры. Составление цифровых электронных схем. Основные законы логической алгебры. 1. Переместительный (коммутативный) закон. 2. Сочетательный (ассоциативный) закон.

3. Основы логической алгебры. Составление цифровых электронных схем. 3. Распределительный (дистрибутивный) закон. 4. Закон поглощения. ( Доказать!)

3. Основы логической алгебры. Составление цифровых электронных схем. 5. Двойное отрицание. 6. Теорема де-Моргана. ( Доказать!) 7. Правило склеивания. ( Доказать!)

3. Основы логической алгебры. Составление цифровых электронных схем. Запишем в виде формулы утверждение: «Я пойду в театр (Т), если достану билет (Б), или меня пригласят (П), и если не поеду в экспедицию (Э). Пусть нужно сделать схему для индикации результатов голосования по проекту. «Проект принят» - лампочка горит (Y=1). Участники голосуют «За» нажатием кнопки (X i =1). Предположим, участников голосования всего трое.

3. Основы логической алгебры. Составление цифровых электронных схем. Составим таблицу всех возможных вариантов голосования. x1x1 x2x2 x3x3 y Y = 1, если x 1 = 0, и x 2 = 1, и x 3 = 1; или если x 1 = 1, и x 2 = 0, и x 3 = 1; или если x 1 = 1, и x 2 = 1, и x 3 = 0; или если x 1 = 1, и x 2 = 1, и x 3 = 1. Для составления схемы согласно этому выражению нужно 8 схем «И», 3 схемы «ИЛИ», три схемы «НЕ» - всего 14 схем.

3. Основы логической алгебры. Составление цифровых электронных схем. Преобразуем (минимизируем) это выражение. Согласно (7.3.1): Х + Х = Х. Следовательно, к выражению можно добавлять одинаковые слагаемые: Поскольку, согласно (3.1),, то выражения в скобках равны единице. Тогда: =1

7.3. Основы логической алгебры. Составление цифровых электронных схем. Мы пришли к тупиковой форме – дальнейшее упрощение уже невозможно. Для реализации такой схемы нужно 2 схемы «И» и две схемы «ИЛИ» - всего 4 схемы. Составим такую схему: & Y х 1 х 1 х 2 х 2 х 3 х 3 1 & 1 Легко видеть, что тупиковых форм может быть несколько. Все они эквивалентны.

7.3. Основы логической алгебры. Составление цифровых электронных схем. Алгоритм составления цифровых электронных схем. 1. Составить таблицу истинности для всех функций Y i согласно предъявляемым к схеме требованиям. 2. Выделить строки, соответствующие Y i = 1 и составить сумму произведений всех X k, причем если в данном столбце X k = 0, то берется его инвертированное значение. 3. Минимизировать полученное выражение, приведя его к одной из тупиковых форм. 4. Составить схему по этому выражению из элементов «И», «ИЛИ», «НЕ». 5. Собрать схему, пользуясь набором элементов.

7.3. Основы логической алгебры. Составление цифровых электронных схем. Составим таблицу для преобразования двоичного кода в код управления семиэлементным цифровым индикатором. X1X1 X2X2 X3X3 X4X4 Y1Y1 Y2Y2 Y3Y3 Y4Y4 Y5Y5 Y6Y6 Y7Y7 Y1Y1 Y2Y2 Y3Y3 Y4Y4 Y5Y5 Y6Y6 Y7Y

7.3. Основы логической алгебры. Составление цифровых электронных схем. Алгебраическое выражение для такого преобразователя будет достаточно сложным. Поэтому составлены схемы основных блоков цифровых схем. Они выпускаются промышленностью.