МБОУ Глубокинская казачья СОШ 1 Каменского района Ростовской области Электромагнитное излучение: «РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ» Выполнила: Обучающаяся 11 -а класса Коротицына Марина п.Глубокий 2012 год
1. Определение рентгеновского излучения 2. Источники рентгеновского излучения 3. Основные свойства 4. История открытия 5. Применение 6. Рентгенология 7. Рентгеновская трубка
Определение рентгеновского излучения Рентгеновское излучение электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма- излучением, что соответствует длинам волн от до 10 7 м. Рентгеновские лучи излучаются при больших ускорениях электронов.
Источники рентгеновского излучения Естественные Искусственные Солнце Нейтронные звезды Рентгеновский аппарат Кинескоп монитора Атомная электростанция
Основные свойства 1. Интерференция 2. Дифракция рентгеновских лучей на кристаллической решетке 3. Большая проникающая способность
История открытия Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал X-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Но еще за 8 лет до этого в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.
Применение При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов. При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов. Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией. В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
При помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде( либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуорисцентным анализом. В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность. Рентгенотерапия раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 2060 кв и кожно-фокусном расстоянии 37 см (короткодистанционная рентгенотерапия) или при напряжении кв и кожно-фокусном расстоянии см (дистанционная рентгенотерапия). Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).
Рентгенология Рентгенология – область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем, и диагностики заболеваний.
Рентгеновская трубка Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода.
Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий. В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, из молибдена или меди. В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло. Схематическое изображение рентгеновской трубки. X рентгеновские лучи, K катод, А анод (иногда называемый антикатодом), С теплоотвод, U h напряжение накала катода, U a ускоряющее напряжение, W in впуск водяного охлаждения, W out выпуск водяного охлаждения.