Работу выполнили учащиеся 7А класса: Сабина Орфаниди Диана Башурова Анастасия Музинская учитель математики: Никитина Т.И.
Математика-наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов
1) Математика в древнем Египте 2) Математика в древней Греция 3) Математика в древнем Китае 4) Математика в Вавилоне 5)Головоломки
Древнейшие древнеегипетские математические тексты относятся к началу II тысячелетия до н. э. Математика тогда использовалась в астрономии, мореплавании, землемерии, при строительстве зданий, плотин, каналов и военных укреплений. Денежных расчётов, как и самих денег, в Египте не было. Египтяне писали на папирусе, который сохраняется плохо, и поэтому наши знания о математике Египта существенно меньше, чем о математике Вавилона или Греции. Вероятно, она была развита лучше, чем можно представить, исходя из дошедших до нас документов известно, что греческие математики учились у египтян.
Математика как наука родилась в Греции. В странах-современниках Эллады математика использовалась либо для обыденных нужд,либо, наоборот, для магических ритуалов, имевших целью выяснить волю богов (астрология, нумерология и т. п.). Греки подошли к делу с другой стороны: они выдвинули тезис «Числа правят миром». Или, как сформулировал эту же мысль Галилей два тысячелетия спустя: «книга природы написана на языке математики» [3]. [3]
Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIIIXII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Развитие науки продолжилось после того, как в XI в. до н. э. династию Шан сменила династия Чжоу. В эти годы возникают китайская математика и астрономия. Появились первые точные календари и учебники математики. «Истребление книг» императором Цинь Ши Хуаном не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.
Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIIIXII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Развитие науки продолжилось после того, как в XI в. до н. э. династию Шан сменила династия Чжоу. В эти годы возникают китайская математика и астрономия. Появились первые точные календари и учебники математики. «Истребление книг» императором Цинь Ши Хуаном не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.
Вавилонские математические тексты носят преимущественно учебный характер. Из них видно, что вавилонская расчётная техника была намного совершеннее египетской, а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, геометрические прогрессии. При решении применялись пропорции, средние арифметические, проценты. Методы работы с прогрессиями были глубже, чем у египтян. Линейные и квадратные уравнения решались ещё в эпоху Хаммурапи (он правил в годах до н. э.); при этом использовалась геометрическая терминология. Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих алгоритмов; эти значки употреблялись, как буквенные обозначения неизвестных в нашей алгебре. Встречаются также кубические уравнения и системы линейных уравнений. Венцом планиметрии была теорема Пифагора; Варден считает, что вавилоняне открыли её между 2000 и 1786 годами до н. э.
9+3-4=8