Copyright 2003 www.ciscopress.com CCNA 1 Chapter 5 Ethernet Fundamentals By Your Name.

Презентация:



Advertisements
Похожие презентации
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Building a Simple Ethernet Network Understanding How an Ethernet LAN Works.
Advertisements

Copyright 2003 CCNA 4 Chapter 20 CCNA Certification Exam Review By Your Name.
Copyright 2003 CCNA 3 Chapter 5 Switching Concepts By Your Name.
Copyright 2003 CCNA 2 Chapter 17 TCP/IP Suite Error and Control Messages By Your Name.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Building a Simple Serial Network Understanding the OSI Model.
Copyright 2003 CCNA 1 Chapter 9 TCP/IP Transport and Application Layers By Your Name.
Copyright 2003 By Your Name CCNA 3 Chapter 1 Review: The OSI Reference Model and Routing.
TCP/IP Protocol Suite 1 Chapter 12 Upon completion you will be able to: Transmission Control Protocol Be able to name and understand the services offered.
2.1 Chapter 2 Network Models Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Copyright CCNA 1 Chapter 6, Part 1 Ethernet Technologies By Your Name.
Copyright 2003 CCNA 1 Chapter 8 Routing Fundamentals and Subnets By Your Name.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Growing the Network Understanding the Challenges of Shared LANs.
Copyright 2003 CCNA 4 Chapter 15 Frame Relay By Your Name.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Operating and Configuring Cisco IOS Devices Configuring a Router.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting to Remote Networks Using Dedicated Connections for WANs.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting Networks Understanding How TCP/IP Works.
Copyright 2003 CCNA 2 Chapter 18 Basic Router Troubleshooting By Your Name.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting to Remote Networks Using Packet Switching in WANs.
Copyright 2003 CCNA 4 Chapter 11 Scaling IP Addresses By Your Name.
Copyright 2003 CCNA 4 Chapter 14 ISDN and DDR By Your Name.
Транксрипт:

Copyright CCNA 1 Chapter 5 Ethernet Fundamentals By Your Name

Copyright Objectives Ethernet fundamentals Ethernet operation

Copyright Introduction to Ethernet The success of Ethernet is due to its simplicity and ease of maintenance, as well as its ability to incorporate new technologies, reliability, and low cost of installation and upgrade.

Copyright Comparing LAN Standards

Copyright OSI Layer 1 and 2 Together Are the Access Protocols These are the delivery system protocols. Independent of: –Network OS –Upper-level protocols TCP/IP, IPX/SPX Sometimes called: –Access methods –Access protocols –Access technologies –Media access –LAN protocols –WAN protocols Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, Frame Relay, ATM, PPP, HDLC, and so on

Copyright IEEE Standard Divided OSI Layer 2 into two sublayers –Media Access Control (MAC) – Traditional L2 features Transitions down to media –Logical link control (LLC) – New L2 features Transitions up to the network layer

Copyright Logical Link Control (LLC) Allows part of the data link layer to function independent of LAN access technologies (protocols / methods) –Provides services to network layer protocols, while communicating with access technologies below it LAN access technologies: –Ethernet –Token Ring –FDDI

Copyright Logical Link Control (LLC) Participates in the data encapsulation process –LLC PDU between Layer 3 and MAC sublayer. –Adds control information to the network layer data to help deliver the packet. It adds two fields: Destination Service Access Point (DSAP) Source Service Access Point (SSAP) Supports both connectionless and connection- oriented upper-layer protocols. Allows multiple higher-layer protocols to share a single physical data link.

Copyright Naming Ethernet uses MAC addresses that are 48 bits in length and expressed as 12 hexadecimal digits. The first 6 hexadecimal digits, which are administered by the IEEE, identify the manufacturer or vendor and thus comprise the organizational unique identifier (OUI). The remaining 6 hexadecimal digits represent the interface serial number, or another value administered by the specific equipment manufacturer.

Copyright Layer 2 Framing Framing is the Layer 2 encapsulation process; a frame is the Layer 2 protocol data unit. A single generic frame has sections called fields, and each field is composed of bytes.

Copyright Framing Why framing is necessary Frame format diagram Generic frame format

Copyright Why Framing Is Necessary Binary data is a stream of 1s and 0s. Framing breaks the stream into decipherable groupings: –Start and stop indicator fields –Naming or addressing fields –Data fields –Quality-control fields Framing is the Layer 2 encapsulation process. A frame is the Layer 2 protocol data unit.

Copyright Generic Frame Format Start Frame field Address fields (source and destination MAC) Type/Length field Data field FCS (Frame Check Sequence) field Frame Stop field

Copyright Ethernet Frame Fields Some of the fields permitted or required in an Ethernet frame are as follows: –Preamble –Start Frame Delimiter –Destination Address –Source Address –Length/Type –Data and Pad –Frame Check Sequence (FCS) –Extension

Copyright Ethernet Operation

Copyright Media Access Control (MAC) Provides MAC addressing (naming) Depending on access technology (Ethernet, Token Ring, FDDI), provides the following: –Data transmission control –Collision resolution (retransmission) –Layer 2 frame preparation (data framing) –Frame check sequence (FCS)

Copyright Media Access Control (MAC) Protocols Ethernet (IEEE 802.3) –Logical bus topology –Physical star or extended star –Nondeterministic First-come, first-served Token Ring (IEEE 802.5) –Logical ring –Physical star topology –Deterministic Token controls traffic –Older declining technology FDDI (IEEE 802.5) –Logical ring topology –Physical dual-ring topology –Deterministic Token controls traffic –Near-end-of-life technology

Copyright Ethernet (CSMA/CD) Carrier sense multiple access with collision detection

Copyright Ethernet Timing Any station on an Ethernet network wanting to transmit a message first listens to ensure that no other station is currently transmitting. If the cable is quiet, the station begins transmitting immediately.

Copyright Interframe Spacing and Backoff

Copyright Error Handling Collisions are the mechanism for resolving contention for network access. Collisions result in network bandwidth loss that is equal to the initial transmission and the collision jam signal. This affects all network nodes, possibly causing significant reduction in network throughput.

Copyright Types of Collisions Three types of collisions are: –Local –Remote –Late

Copyright Ethernet Errors The following are the sources of Ethernet error: –Simultaneous transmission occurring before slot time has elapsed (collision or runt) –Simultaneous transmission occurring after slot time has elapsed (late collision) –Excessively or illegally long transmission (jabber, long frame and range errors) –Illegally short transmission (short frame, collision fragment or runt) –Corrupted transmission (FCS error) –Insufficient or excessive number of bits transmitted (alignment error) –Actual and reported number of octets in frame don't match (range error) –Unusually long preamble or jam event (ghost or jabber)

Copyright FCS and Beyond A received frame that has a bad frame check sequence, also referred to as a checksum or CRC error, differs from the original transmission by at least 1 bit.

Copyright Ethernet Autonegotiation A process called autonegotiation (of speeds at half or full duplex) was developed. This process defines how two link partners may automatically negotiate a configuration offering the best common performance level. It has the additional advantage of only involving the lowest part of the physical layer.

Copyright Link Establishment There are only two ways to achieve a full-duplex link: –Through a completed cycle of autonegotiation –Or, by administratively forcing both link partners to full duplex