Презентация на тему : ПРИЗМА Автор : Нечаев Кирилл Андреевич 2011 Западное Окружное Управление Департамента Образования города Москвы ГБОУ города Москвы.

Презентация:



Advertisements
Похожие презентации
ПРИЗМА. Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие.
Advertisements

ПРИЗМА. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями -
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
Призма Многогранник, составленный из двух равных многоугольников A 1 A 2 …A n и B 1 B 2 …B n, расположенных в параллельных плоскостях, и n параллелограммов,
ЗАПАДНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ ДЕПАРТАМЕНТА ОБРАЗОВАНИЯ города Москвы ГБОУ СОШ «Школа здоровья» 384 Презентация на тему: Призма. Автор: Каюмов.
Многогранник это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
План: Призмы вокруг нас Сечения призм Поверхность призм Виды призм и их особенности Общие свойства призм Элементы призм Понятие призм.
Призма Объем наклонной призмы. ПРИЗМА. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями)
Многогранники. Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.
ПРИЗМЫ Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между.
Презентация на тему: «Призма». Содержание:Содержание: 1.) О ОО Определение призмы. 2.) виды призм: - прямая призма; - наклонная призма; - правильная призма;
Гороховой Юлии 11 « А » школа 531. Призма - это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани - параллелограмы.
Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы.
ПРИЗМА. Евклид определяет призму как телесную фигуру, заключенную между двумя равными и параллельными плоскостями (основаниями) и с боковыми гранями -
Слайд – лекция Составлена учителем математики Поназыревской средней общеобразовательной школы Орловой Н. В.
ПОНЯТИЕ МНОГОГРАННИКА. Что такое тетраэдр? Это геометрическое тело (поверхность), составленная из четырех треугольников.
Многогранником называется поверхность, составленная из многоугольников, ограничивающих некоторое геометрическое тело.
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Призма Определение призмы: А1А2…АnВ1В2Вn– призма Многоугольники А1А2…Аn и В1В2…Вn – основания призмы Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
Транксрипт:

Презентация на тему : ПРИЗМА Автор : Нечаев Кирилл Андреевич 2011 Западное Окружное Управление Департамента Образования города Москвы ГБОУ города Москвы СОШ «Школа здоровья» 384

План : 1. Что такое призма ( определение ) 2. Два вида призм 3. Свойства призмы 4. Площадь призмы 5. Сечение призмы 6. Второе определение призмы 7. Симметрия правильной призмы 8. Объём призмы 9. Заключение

Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой. Термин призма греческого происхождения и буквально означает отпиленное ( тело ). Многоугольники, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями. Поверхность призмы, таким образом, состоит из двух равных многоугольников ( оснований ) и параллелограммов ( боковых граней ). Различают призмы треугольные, четырехугольные, пятиугольные и т. д. в зависимости от числа вершин основания.

Все призмы делятся на прямые и наклонные. Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой ; если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют наклонной. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Боковые грани призмы являются параллелограммами. 3. Боковые ребра призмы равны.

Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность многогранника состоит из конечного числа многоугольников ( граней ). Площадь поверхности многогранника есть сумма площадей всех его граней. Площадь поверхности призм (S пр ) равна сумме площадей ее боковых граней ( площади боковой поверхности S бок ) и площадей двух оснований (2S осн ) - равных многоугольников : S пов =S бок +2S осн. Теорема. Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники, основания которых - стороны основания призмы, а высоты равны высоте h призмы. S бок поверхности призмы равна сумме S указанных треугольников, т. е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т. е. периметр P. Итак, S бок =Ph. Теорема доказана. Следствие. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты. Действительно, у прямой призмы основание можно рассматривать как перпендикулярное сечение, а боковое ребро есть высота.

Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечении образуется многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется параллелограмм. Такое сечение называется диагональным сечением призмы. В некоторых случаях может получаться ромб, прямоугольник или квадрат.

Определение 2. Прямая призма, основанием которой служит правильный многоугольник, называется правильной призмой. Свойства правильной призмы 1. Основания правильной призмы являются правильными многоугольниками. 2. Боковые грани правильной призмы являются равными прямоугольниками. 3. Боковые ребра правильной призмы равны.

Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллельной основанию. В сечении образуется правильный многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение правильной призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется прямоугольник. В некоторых случаях может образоваться квадрат.

Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основания точка пересечения диагоналей правильной призмы

2. Плоскости симметрии : плоскость, проходящая через середины боковых ребер ; при четном числе сторон основания плоскости, проходящие через противолежащие ребра.

3. Оси симметрии : при четном числе сторон основания ось симметрии, проходящая через центры оснований, и оси симметрии, проходящие через точки пересечения диагоналей противолежащих боковых граней.

Объём призмы Объём призмы равен произведению её высоты на площадь основания V=S*h

Источники :