* Презентация по математике «Золотое сечение» Бухарина Е.В. учитель математики Гимназия 1 г. Краснознаменск Московской области 2011 год.

Презентация:



Advertisements
Похожие презентации
Золотое сечение - пропорциональное деление отрезка на неравные части. При котором длина всего отрезка так относится к его большей части, как длина большей.
Advertisements

Золотое сечение Хен Евгения Группа Л11-5 Реферат.
Золоте сечение в природе. Введение Есть только два сокровища - теорема Пифагора и золотое сечение, если первое из них можно сравнить с мерой золота, то.
Работа по геометрии на тему: «Золотое сечение» Подготовлено: Корнет Л.И.
МОУ СОШ 1 ЗОЛОТОЕ СЕЧЕНИЕ Учитель математики Учитель математики высшей категории высшей категории Л.В. Рысева Л.В. Рысева ст. Отрадная г.
Построение золотого сечения. У понятия « золотое сечение » есть два смысла математический и эстетический. Они тесно связаны между собой. Эстетический.
Золотая пропорция.. Гипотеза. Золотая пропорция Золотая пропорция существует в природе и применима в деятельности человека.
А вы знаете что такое золотое сечение?. Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится.
Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок.
2008 МОУ СОШ 80 г. Владивостока ЗОЛОТОЕ СЕЧЕНИЕ Разработал: ученик 11А класса Королёв А.А. Руководитель: учитель математики Шокарева Н.С.
МОУ «Шарапово – Охотская средняя общеобразовательная школа» Проектная работа по теме: Выполнили ученики 6 класса: Симарова Анастасия Изгаршев Егор Изгаршев.
«ЗОЛОТОЕ СЕЧЕНИЕ» О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Что же такое «золотое сечение»?.. Может быть, это закон красоты?
Геометрические построения. Деление окружности на равные части Золотое сечение.
Золотое сечение Золотым сечением называется такое делением целого на две неравные части, при котором меньшая часть так относится к большей, как большая.
Работу выполнила: Лохматова Н. 21 ПЗ. В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как.
Исследовательская работа по математике Ученицы 10 класса Моториной Валерии.
Исследовательская работа по математике Золотое сечение Выполнил: ученик 6 класса 3 Варсеев Дмитрий Брянский городской лицей 1 имени А.С.Пушкина.
«Золотое сечение» в живой природе Тело человека и «золотое сечение»
Учебный проект Тема: От математики к красоте и гармонии Презентация ученика 6 класса Вишнякова Петра.
Золотое сечение. Работу выполнила: Дмитриева Ксения Анатольевна, Ученица 9 класса «В» Средней школы 13. Учитель: Пыльнова Галина Ивановна. Павловский Посад,
Транксрипт:

* Презентация по математике «Золотое сечение» Бухарина Е.В. учитель математики Гимназия 1 г. Краснознаменск Московской области 2011 год.

План проекта: ввести понятие «золотое сечение» геометрическое построение «золотого сечения» построение правильного пятиугольника пентаграмма – символ «золотого сечения» «золотое сечение» в: - природе - искусстве - архитектуре «золотое сечение» и мода

Алгебраическое построение «золотого сечения» АВ=а сводится к решению уравнения a:x=x:(a-x), где x=b, откуда x= = 0,62a. Отношение x к а может быть так же выражено дробями 2/3, 3/5, 5/8, 8/13, 13/21,…, где 2, 3, 5, 8, 13, 21,… - числа Фибоначчи. «Золотое сечение» «Золотое сечение» деления в крайнем и среднем отношении – деление отрезка с на две части таким образом, что большая часть b является средней пропорциональной между всем отрезком c и меньшей его частью a.

Геометрическое построение «золотого сечения»

Построение правильного пятиугольника Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем точки.

Построение пентаграммы Соединяем углы полученного выше пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d 1 соединяем прямыми с точкой А. Отрезок dd 1 откладываем на линию Ad 1, получая точку С. Она разделила линию Ad 1 в пропорции золотого сечения. Линиями Ad 1 и dd 1 пользуются для построения «золотого» прямоугольника.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется спиралью Архимеда. Золотая спираль

В расположении листьев на ветке, семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как золотая пропорция.

Портрет «Мона Лиза» (Джоконда) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

На подготовительном эскизе Рафаэля проведены линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается золотая спираль.

Статуя Поликлета «Дорифор» Отношение высот нижней и верхней частей, на которые статую делит пупок, равно золотому сечению; в свою очередь, основание шеи делит верхнюю часть также в золотом сечении; колени делят нижнюю часть в золотом сечении, и т. д.

Парфенон «Золотое сечение» многократно встречается при анализе геометрических соразмерностей Парфенона. В частности в отношении ширины фасада Парфенона к его высоте.

О выборе длины юбки Длину юбки можно рассчитать по следующим формулам: Микро-мини: ДИ = 0,18 * Р Мини: ДИ = 0,26 * Р Группа мини-юбок довольна широка, поэтому выбор нужной длины можно делать в диапазоне - от 0,22 * Р до 0,3 * Р. Длина до колена: ДК = 0,35 * Р ДИ = ДК – 3 Юбка-миди: ДИ= 0,5 * Р Длину "миди" можно выбирать из диапазона - от 0,4 * Р до 0,55 * Р Юбка-макси: ДИ = 0,62 * Р Все приведенные выше формулы разработаны на основе Золотого сечения и позволяют создавать модели поясной группы, идеально подходящие любой девушке. *ДИ – длина изделия; ДК – уровень колена; Р - рост

Рост(см) Микро- мини (см)Мини(см) Длина до колена (см) Юбка- миди (см) Юбка- макси (см) ,940,354,2577,596, ,841, , ,742,957,7582,5102, ,644,259,585105,4