Элективный курс по алгебре в 9 классе «Комплексные числа» г. Пермь МОУ «Гимназия 5» учитель математики высшая категория Ненашева Татьяна Васильевна стаж.

Презентация:



Advertisements
Похожие презентации
Элективный курс по алгебре в 9 классе «Комплексные числа» Элективный курс по алгебре в 9 классе «Комплексные числа»
Advertisements

После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
К о м п л е к с н ы е ч и с л а. Вычислите: Мнимая единица Мнимая единица i – начальная буква французского слова imaginaire – «мнимый»
Комплексные числа История возникновения комплексных чисел.
Теория комплексных чисел. «настоящие» только натуральные числа- древнегреческие математики Введение отрицательных чисел- китайские математики за 2 века.
Многочлены. Решение олимпиадных задач по теме «Многочлены» Выполнила ученица 10 класса Б МБОУ лицея 1 Пщегорская Наталья.
Комплексные числа Математический марафон.. 1. Знать: Понятие мнимой единицы. Степени мнимой единицы. Определение комплексного числа. Действия над комплексными.
1 Научная работа «Мир мнимой единицы» Учащегося Бурого Кирилла.
Решение линейных и квадратных уравнений с параметрами в курсе математики основной школы.
КОМПЛЕКСНЫЕ ЧИСЛА. N C Z C Q C R C C N- natural R- real C - complex Z – исключительная роль нуля zero Q – quotient отношение ( т.к. рациональные числа.
LOGO Действительные числа. LOGO Cодержание Множество действительных чисел Примеры и назначение Рациональные числа Иррациональные числа Свойства.
ФАКУЛЬТАТИВЫ ПО МАТЕМАТИКЕ Костюкова Галина Аркадьевна, учитель математики, 1 кв. категория Ручкина Анна Ивановна, учитель математики, 1 кв. категория.
Кто? Когда? Зачем? Образец работы студента выполнен преподавателем Кононовой О. Г.
Действительные числа. Степенная функция. Материалы по математике для обучающихся 10 класса.
ЧИСЛОВЫЕ СИСТЕМЫ Действительные числа Рациональные числа Целые числа Комплексные числа Натуральные числа.
Малая Академия Наук гимназии 1 г. Нерюнгри математическое отделение 2006 – 2007 гг.
Комплексные числа МОУ Новосёлковская сош Сиднева Алёна Андреевна ученица 8а класса ученица 8а классаучитель Филатова Анастасия Николаевна Николаевна учитель.
Проведем экскурс в тему. 1. Какие уравнения называются квадратными? 2. Какое квадратное уравнение называется полным, неполным? 3. Какое уравнение называется.
Транксрипт:

Элективный курс по алгебре в 9 классе «Комплексные числа» г. Пермь МОУ «Гимназия 5» учитель математики высшая категория Ненашева Татьяна Васильевна стаж 25 лет

Среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи что нам надо размышлять дни и ночи над их удивительной закономерностью… над их удивительной закономерностью…Стевин

Основные цели -интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценной жизни в обществе, -овладение конкретными математическими знаниями, умениями и навыками, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования, -воспитание личности в процессе освоения математики и математической деятельности, -формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности.

Задачи курса: -продолжить изучение вопросов при решении уравнений второй, третьей и четвёртой степени, -познакомить учащихся с комплексными числами и операциями над ними, -сформировать у учащихся умение выполнять действия над комплексными числами, -формировать у учащихся потребность использования информационных технологий в решении задач математики, -развивать межпредметные связи, -интеллектуальное развитие учащихся, -формирование качеств мышления, характерных для математической деятельности, -формирование представлений о методах математики.

Требования к математической подготовке -учащиеся должны знать и правильно употреблять термины «комплексное число», «мнимая единица», -знать методы решения уравнений, -знать основные теоремы и формулы, -уметь решать алгебраические уравнения, -проводить полные обоснования при решении задач.

Особенности методики 1. Подача материала крупными блоками. 2. Опорные конспекты. 3. Использование интерактивной доски. 4. Индивидуальная работа учащихся по усвоению теории. 5. Блок практики. 1) Практическая работа в классе (наиболее сложные контрольные вопросы и задачи). 1) Практическая работа в классе (наиболее сложные контрольные вопросы и задачи). 2) Самостоятельное решение. 2) Самостоятельное решение. 3) Взаимопроверка выполненных заданий. 3) Взаимопроверка выполненных заданий. 6. Контроль и оценка ЗУН. 1) Устный опрос по конспекту. 1) Устный опрос по конспекту. 2) Парный и групповой взаимоконтроль. 2) Парный и групповой взаимоконтроль. 3) Самоконтроль. 3) Самоконтроль.

Тема 1 Введение a+bi

Содержание темы Множества чисел Кклассификация чисел Исторический материал. Значение математического образования Основные цели математического образования «Математическое образование в моей жизни»

Тема 2 История возникновения комплексных чисел

Содержание темы Рассмотреть множества чисел, классификацию чисел. Посмотреть и обсудить презентации «Математическое образование в моей жизни». Провести изучение нового материала в лекционной форме с презентацией. Провести изучение нового материала в лекционной форме с презентацией. Составление летописи открытий в мире чисел. Составление летописи открытий в мире чисел.

Число – одно из основных понятий математики в глубокой древности. На протяжении веков это понятие постепенно подвергалось расширению и обобщению: натуральные числа, дробные положительные числа, отрицательные числа, нуль, рациональные числа.

Новые запросы практики и науки требовали расширение понятия числа. Новые запросы практики и науки требовали расширение понятия числа. В конце V в. до н.э. Теодор Киренский (учитель Платона) сумел доказать, что стороны квадратов, имеющих площади 3,5,7,8,10,11,12,13,14.15,17 кв.ед., несоизмеримы со стороной единичного квадрата, т.е. иррациональны.

Летописьоткрытий в мире чисел в мире чисел

300 в. до н.э. люди отмечали числа зарубками VIII-VI в.в. до н.э. Пифагор, его школа – зарождение теории чисел. Числа чётные, нечётные, совершенные, простые, фигурные III в. до н.э. «Решето Эратосфена» для нахождения простых чисел II-I в.в. до н.э. отрицательные числа

I в. н. э. совершенные числа III в. н. э. десятичные дроби V-VII в.в. н.э. целые, дробные, отрицательные числа X-XI в.в. н.э. нуль, Пифагоровы числа XII в.н.э. правила умножения и деления отрицательных чисел

XIII в.н.э. таблица простых чисел XIV в.н.э. десятичные дроби XVI в н.э. отрицательные числа меньше нуля, теория комплексных чисел XVIII в.н.э. определение числа как отношение двух однородных величин XIX в. н.э. полное признание комплексных чисел

Кардано рассматривал отрицательные числа, называя их «вымышленными», но он не был в состоянии что-либо сделать в так называемом «неприводимом случае» уравнении 3-й степени, Кардано рассматривал отрицательные числа, называя их «вымышленными», но он не был в состоянии что-либо сделать в так называемом «неприводимом случае» уравнении 3-й степени, когда налицо три действительных корня. когда налицо три действительных корня. Но они получаются в виде суммы и разности чисел, называемых теперь мнимыми. Но они получаются в виде суммы и разности чисел, называемых теперь мнимыми.

Эта трудность была преодолена одним из болонских математиков Эта трудность была преодолена одним из болонских математиков 16 века, Рафаэлем Бомбелли, чья «Алгебра» появилась в 1572 г. В этой книге и в «Геометрии», написанной около 1550 г. оставшееся в рукописи, он вводит последовательную теорию мнимых и комплексных чисел. В этой книге и в «Геометрии», написанной около 1550 г. оставшееся в рукописи, он вводит последовательную теорию мнимых и комплексных чисел.

Тема 3 Расширение понятия числа

Содержание темы Рассмотреть взаимно - однозначное соответствие между всех точек числовой оси и множеством действительных чисел. Выяснить какие из шести действий выполнимы в множестве всех положительных чисел, в множестве всех рациональных чисел, в множестве всех действительных чисел. Определить место комплексных чисел в схеме классификации чисел. Всегда ли разрешимо в множестве действительных чисел уравнение ax 2 = b?

Тема 4 Определение комплексных чисел и операций над ними

Содержание темы Определение комплексных чисел Мнимая единица Мнимые числа Алгебраическая форма комплексного числа Действительная часть комплексного числа Мнимая часть комплексного числа Разность комплексных чисел Частное комплексных чисел Противоположные числа Обратные числа

Тема 5 Сопряжённые комплексные числа

Содержание темы: Содержание темы: Определение сопряжённых чисел Теоремы о сопряжённых комплексных числах (4) Следствия из теорем о сопряженных числах

Тема 6 Извлечение квадратных корней из комплексных чисел

Содержание темы Определение квадратного корня из комплексного числа Теорема о двух взаимно противоположных комплексных числах

Тема 7 Решение квадратных уравнений с комплексными коэффициентами

Содержание темы Общий вид квадратных уравнений с комплексными коэффициентами Алгоритм решения квадратных уравнений с комплексными коэффициентами

Тема 8 Геометрическое изображение комплексных чисел

Содержание темы: Координаты комплексного числа Радиус-векторы Сумма векторов Разность векторов Комплексная плоскость

Тема 9 Основная теорема алгебры многочленов

Содержание темы: Теорема о количестве комплексных корней Следствие из теоремы о разложении многочлена Корень многочлена