WORKSHOP 1 GETTING STARTED CREATING A CONDUCTION MODEL WS1-1 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation.

Презентация:



Advertisements
Похожие презентации
WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
Advertisements

WS10-1 WORKSHOP 10 TRANSIENT ANALYSIS WITH RADIATION SOURCE AND CONVECTION NAS104, Workshop 10, March 2004 Copyright 2004 MSC.Software Corporation.
WS17-1 WORKSHOP 17 IMPORT IGES FILE AND AUTO-TET MESH THE GEOMETRY NAS104, Workshop 17, March 2004 Copyright 2004 MSC.Software Corporation.
WS11-1 WORKSHOP 11 HEATING A BLOCK OF ICECREAM NAS104, Workshop 11, March 2004 Copyright 2004 MSC.Software Corporation.
WS13-1 WORKSHOP 13 DIRECTIONAL HEAT LOADS NAS104, Workshop 13, March 2004 Copyright 2004 MSC.Software Corporation.
WS8-1 WORKSHOP 8 TRANSIENT THERMAL NAS104, Workshop 8, March 2004 Copyright 2004 MSC.Software Corporation.
WS2-1 WORKSHOP 2 CIRCUIT BOARD AND CHIPS USING CONDUCTION AND HEATING NAS104, Workshop 2, March 2004 Copyright 2004 MSC.Software Corporation.
WS15-1 WORKSHOP 15 THERMAL STRESS ANALYSIS WITH DIRECTIONAL HEAT LOADS NAS104, Workshop 15, March 2004 Copyright 2004 MSC.Software Corporation.
WS1a-1 WORKSHOP 1A NORMAL MODES ANALYSIS NAS122, Workshop 1a, August 2005 Copyright 2005 MSC.Software Corporation.
WS1-1 WORKSHOP 1 IMPORTING A TEMPERATURE FIELD PAT 328, Workshop 1, September 2004 Copyright 2004 MSC.Software Corporation.
WS4-1 WORKSHOP 4 FORCED AIR CONVECTION FROM PRINTED CIRCUIT BOARD NAS104, Workshop 4, March 2004 Copyright 2004 MSC.Software Corporation.
WS6-1 WORKSHOP 6 TYPICAL AVIONICS FLOW NAS104, Workshop 6, March 2004 Copyright 2004 MSC.Software Corporation.
WS2-1 PAT301, Workshop 2, October 2003 WORKSHOP 2 CANTILEVERED PLATE.
WS1c-1 WORKSHOP 1C NORMAL MODES ANALYSIS WITH FINE MESH NAS122, Workshop 1c, August 2005 Copyright 2005 MSC.Software Corporation.
WORKSHOP 13 NORMAL MODES OF A RECTANGULAR PLATE. WS13-2 NAS120, Workshop 13, May 2006 Copyright 2005 MSC.Software Corporation.
WS1-1 NAS120, Workshop 1, May 2006 Copyright 2005 MSC.Software Corporation WORKSHOP 1 LANDING GEAR STRUT ANALYSIS.
WS5-1 WORKSHOP 5 AXISYMMETRIC FLOW IN A PIPE NAS104, Workshop 5, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER. WS9A-2 NAS120, Workshop 9A, May 2006 Copyright 2005 MSC.Software Corporation.
WS16-1 WORKSHOP 16 THERMAL STRESS ANALYSIS OF A BI-METALIC PLATE Thermal Stress From Thermal NAS104, Workshop 16, March 2004 Copyright 2004 MSC.Software.
WORKSHOP 9B 2½ D CLAMP – ISO MESHER. WS9B-2 NAS120, Workshop 9B, May 2006 Copyright 2005 MSC.Software Corporation.
Транксрипт:

WORKSHOP 1 GETTING STARTED CREATING A CONDUCTION MODEL WS1-1 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation

WS1-2 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation

WS1-3 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation n Problem Description u Create a model of an aluminum plate subjected to fixed temperature, heat flux, and convection. Shown below is a drawing representing the model. There are some suggested steps for its construction on the next page.

WS1-4 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation n Suggested Exercise Steps 1. Create a new database for MSC.NASTRAN thermal analysis. 2. Specify thermal analysis. 3. Create geometric surface for meshing. 4. Mesh surface with MSC.Nastran CQUAD4 elements. 5. Create isotropic material. 6. Define properties for 2D CQUAD4 elements 7. Apply boundary temperature. 8. Apply heat flux on one edge. 9. Apply convection on one edge. 10. Run Steady-State thermal analysis. 11. Access results file. 12. View the results. 13. Quit MSC.Patran

WS1-5 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 1: Create New Database Create a new database. a.File/New… b.Specify database name in File name, conduction.db c.Click OK. a c a b

WS1-6 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 2: Specify Thermal Analysis Set new Model Preferences. a.Select Default for Tolerance. b.Select MSC.Nastran for Analysis Code. c.Select Thermal for Analysis Type. d.Click OK. c a b d

WS1-7 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 3: Create Geometric Surface for Meshing Create the a rectangle a.Geometry: Create/Surface/XYZ b.Enter for Vector Coordinates List. c.Enter [0 0 0] for Origin Coordinates List. d.Click Apply. c a b d

WS1-8 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 4: Mesh Surface With CQUAD4 Elements Mesh the surface with elements. a.Material: Create/ Mesh/Surface. b.Select Quad for Elem Shape. c.Select IsoMesh for Mesher. d.Select Quad4 for Topology. e.Select Surface 1 for Surface List. f.Enter 0.1 for Global Edge Length. g.Click Apply, see the drawing. h.Click Undo icon i.Change the value of Global Edge Length from 0.1 to 0.2. j.Click Apply. c a b f d e e g h

WS1-9 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 5: Define Isotropic Material Defining material a.Material: Create/Isotropic/Manual/Input. b.Enter alum for Material Name c.Click Input Properties… d.Select Solid properties for Constitutive Model. e.Enter 204 for Thermal Conductivity. f.Enter 896 for Specific Heat. g.Enter 2707 for Density. h.Click OK. i.Click Apply. c a b f d e g h i

WS1-10 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 6: Define Properties for 2D CQUAD4 Elements Defining properties a.Properties: Create/2D/Shell b.Enter plate for Property Set Name c.Select Standard Formulation for Option(s). d.Click Input Properties… e.Click in the Material Name box and click alum in the Material Property Sets to select it. f.Specify Thickness as 0.1 g.Click OK. h.Select Surface 1 for Select Members. i.Click Add. j.Click Apply. g e e c a b d h i j f

WS1-11 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 7: Apply Boundary Temperature Create Loads/BCs a.Loads/BCs: Create/ Temp(Thermal)/Nodal. b.Enter tempbc for New Set Name. c.Click Input Data.. d.Enter 50 for Boundary Temperature. e.Click OK. f.Continue next slid. c a b d e

WS1-12 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 7: Apply Boundary Temperature (Cont.) Apply boundary temperature a.Click Select Application Region. b.Select Geometry for Geometry Filter. c.See Figure to select Surface 1.4 for Select Geometry Entities. d.Click Add. e.Click OK. f.Click Apply. c a b f d e

WS1-13 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 8: Apply Heat Flux on One Edge a.Loads/BCs: Create/Applied Heat/Element Uniform. b.Select Normal Fluxes for Option. c.Enter Flux for New Set Names. d.Select 2D for Target Element Type. e.Click Input Data… f.Select Basic for Form Type. g.Select Edge for Surface Option. h.Enter 5000 for Edge Heat Flux. i.Click OK. j.Click Select Application Region… k.Continue next slid. c a b f d e g h i j

WS1-14 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 8: Apply Heat Flux on One Edge (Cont.) a.Select Geometry for Geometry Filter. b.See Figure to select Surface 1.3 for Select Surfaces or Edges. c.Click Add. d.Click OK. e.Click Apply. c a b d e

WS1-15 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 9: Apply Convection on one Edge a.Loads/Bcs: Create/Convection/Element Uniform. b.Select To Ambient for Option. c.Enter Conv for New Set Names. d.Select 2D for Target Element Type. e.Click Input Data.. f.Select Edge for Surface Option. g.Enter 10 for Edge Convection Coef. h.Enter 20 for Ambient Temperature. i.Click OK. j.Continue next slid. c b f d e g h i a

WS1-16 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 9: Apply Convection on one Edge (Cont.) a.Click Select Application Region.. b.Click Geometry for Geometry Filter. c.See figure to select Surface 1.1 for Select Surfaces or Edges. d.Click Add. e.Click OK. f.Click Apply. c a b f d e

WS1-17 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 10: Run Steady-State Thermal Analysis Analyze the analysis. a.Analysis: Analyze/Entire Model/Full Run. b.Enter conduction for Job Name. c.Click Apply. c a b

WS1-18 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 11: Access Results File Attach the.xdb file to read the results. a.Analysis: Attach XDB/Result Entities/Local. b.Click Select Results File… c.Select conduction.xdb. d.Click OK. e.Click Apply. b a e c d

WS1-19 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 12: View the Results View results a.Results: Create/Quick Plot. b.Select SC1:DEFAULT, A1:Non-linear:…. for Select Result Cases. c.Select Temperatures for Select Fringe Result. d.Click Apply. c a b d

WS1-20 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation Step 13. Quit MSC.Patran Quit MSC.Patran a.Select File on the Menu Bar and select Quit from the drop down menu a